期刊文献+

Characterization of ZnS nanoparticles synthesized by co-precipitation method 被引量:1

Characterization of ZnS nanoparticles synthesized by co-precipitation method
下载PDF
导出
摘要 ZnS nanoparticles are prepared by homogeneous chemical co-precipitation method using EDTA as a stabilizer and capping agent. The structural, morphological, and optical properties of as-synthesized nanoparticles are investigated using x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible (UV-Vis) absorption, and photoluminescence spectroscopy. The x-ray diffraction pattern exhibits a zinc-blended crystal structure at room temperature. The average particle size of the nanoparticles from the scanning electron microscopy image is about 50 nm. The ultraviolet absorption spectrum shows the blue shift in the band gap due to the quantum confinement effect. The photoluminescence spectrum of ZnS nanoparticles shows a blue visible spectrum. ZnS nanoparticles are prepared by homogeneous chemical co-precipitation method using EDTA as a stabilizer and capping agent. The structural, morphological, and optical properties of as-synthesized nanoparticles are investigated using x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible (UV-Vis) absorption, and photoluminescence spectroscopy. The x-ray diffraction pattern exhibits a zinc-blended crystal structure at room temperature. The average particle size of the nanoparticles from the scanning electron microscopy image is about 50 nm. The ultraviolet absorption spectrum shows the blue shift in the band gap due to the quantum confinement effect. The photoluminescence spectrum of ZnS nanoparticles shows a blue visible spectrum.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期306-309,共4页 中国物理B(英文版)
关键词 NANOPARTICLES zinc sulfide optical properties CO-PRECIPITATION nanoparticles, zinc sulfide, optical properties, co-precipitation
  • 相关文献

参考文献23

  • 1Hwang J M, Oh M O, Kim I, Lee J K and Ha C S 2005 Curr. Appl. Phys. 5 31.
  • 2Cho H, Yun C, Park J and Yoo S 2009 Org. Electron. 10 1163.
  • 3Hong K J, Jeong T S, Yoon C J and Shin Y J 2000 J. Cryst. Growth 218 19.
  • 4Yokogawa M and Chen N 2001 J. Crystal Growth 223 369.
  • 5Yamamoto T, Kishimoto S and Iida S 2001 Physics B 308 916.
  • 6Liu X, Cai X, Mao J and Jin C 2001 Appl. Surf. Sci. 183 103.
  • 7Sapsford K E, Pons T, Medntz I L and Mattoussi H 2006 Sensors 6 925.
  • 8Durandurdu M 2009 J. Phys. Chem. Solids 70 645.
  • 9Becker W G and Bard A J 1983 J. Phys. Chem. 87 4888.
  • 10Henglein A and Gutierrez M 1983 Ber. Bunsenges. Phys. Chem. 87 852.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部