期刊文献+

Triblock copolymer-assisted construction of 20 nm-sized ytterbium-doped TiO_2 hollow nanostructures for enhanced solar energy utilization efficiency 被引量:2

Triblock copolymer-assisted construction of 20 nm-sized ytterbium-doped TiO_2 hollow nanostructures for enhanced solar energy utilization efficiency
原文传递
导出
摘要 Rare-earth doped titania single-crystalline hollow nanoparticles of 20 nm are constructed via a simple sol-gel process. Amphiphilic ABA tri-block copolymers played a key role in assisting the formation of hollow structure, for which a hollow nanostructure growth mechanism is proposed. By introducing rare earth into the synthesis process, the as-prepared nanoparticles exhibit near-infrared light absorption properties. Photo-decomposition efficiency of Orange II azo dye can be successfully evaluated when using Yb3+-doped Ti O2 hollow nanoparticles as photocatalysts; it is more than two times higher than the pure Ti O2 hollow nanoparticles. The hollow nanostructured Yb3+-doped Ti O2 samples are exploited as photoanodes in N719- sensitized solar cells and prove able to improve the photoelectric conversion efficiency by measuring the solar cell parameters of dye-sensitized solar cells(DSSCs) under simulative sunlight. Rare-earth doped titania single-crystalline hollow nanoparticles of 20 nm are constructed via a simple sol-gel process. Am- phiphilic ABA tri-block copolymers played a key role in assisting the formation of hollow structure, for which a hollow nanostructure growth mechanism is proposed. By introducing rare earth into the synthesis process, the as-prepared nanoparti- cles exhibit near-infrared light absorption properties. Photo-decomposition efficiency of Orange II azo dye can be successfully evaluated when using yb3+-doped TiO2 hollow nanoparticles as photocatalysts; it is more than two times higher than the pure TiO2 hollow nanoparticles. The hollow nanostructured Yb3+-doped TiO2 samples are exploited as photoanodes in N719- sensitized solar cells and prove able to improve the photoelectric conversion efficiency by measuring the solar cell parameters of dye-sensitized solar cells (DSSCs) under simulative sunlight.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第5期850-857,共8页 中国科学(化学英文版)
基金 financially supported by the National Natural Science Foundation of China(21201133,51272186)
关键词 rare earth hollow nanostructure TITANIA SINGLE-CRYSTALLINE COPOLYMER 三嵌段共聚物 中空结构 纳米结构 TiO2 镱掺杂 光能利用率 染料敏化太阳能电池 辅助施工
  • 相关文献

参考文献47

  • 1Hoffmann MR, Martin ST, Choi WY, Bahnemannt DW. Environ- mental applications of semiconductor photocatalysis. Chem Rev, 1995, 95:69-96.
  • 2Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238:37-38.
  • 3Gratzel M. Solar energy conversion by dye-sensitized photovoltaic cells, lnorg Chem, 2005, 44:6841-6851.
  • 4Yin ZY, Zhu JX, He QY, Cao XH, Tan CL, Chen HY, Yan QY, Zhang H. Graphene-based materials for solar cell applications. Adv Energy Mater, 2014, 4:1300574.
  • 5Zhu JX, Yang D, Yin ZY, Yan QY, Zhang H. Graphene and graphene-based materials for energy storage applications. Small, 2014, 10:3480-3498.
  • 6Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett, 2006, 6:215-218.
  • 7Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye- sensitized solar cells. Chem Rev, 2012, 110:6595-6663.
  • 8Chen XB, Liu L, Yu PY, Mao SS. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals Science, 2011, 331: 746-750.
  • 9Linsebigler AL, Lu GQ, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev, 1995, 95: 735-758.
  • 10Janisch R, Gopal P, Spaldin NA. Transition metal-doped TiO2 and ZnO-present status of the field. J Phys: Condens Matter, 2005, 17: 657-689.

同被引文献5

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部