期刊文献+

基于压缩感知的自适应谱减法语音增强算法 被引量:3

Adaptive spectral subtraction speech enhancement algorithm based on compressed sensing
下载PDF
导出
摘要 针对在压缩感知框架下,噪声的影响会被扩大这个问题,提出了一种新的基于压缩感知的语音增强算法。该方案利用压缩感知下的行阶梯观测矩阵能够保留大部分语音特性的特点,对观测序列进行谱减法消噪,再对得到的观测序列进行基于输入信噪比的自适应重构,最后通过低通滤波器对重构语音进行平滑滤波,除去高频成分。实验结果表明:提出的语音增强方法具有较强的抗噪能力,重构速度快,输出的信噪比高,鲁棒性能好。 A novel speech enhancement algorithm based on compressed sensing is proposed for solving the problem that noise will be expanded under CS framework. Since row echelon measurement matrix can re- tain a large part of speech characteristics, the traditional spectral subtraction can be used to denoise the measurement sequence under the framework of compressed sensing. The reconstruction algorithm is modi- fied for different input signal-to-noise ratios (SNRs). Finally, a low-pass filter is added to remove high frequency components. Simulation results indicate that the proposed algorithm has a high speech enhance- ment capability and can speed up the reconstruction noise intensities. Also, it performs high robustness under different
作者 于志文 朱琦
出处 《南京邮电大学学报(自然科学版)》 北大核心 2015年第2期51-57,共7页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)(2011CB302903) 国家自然科学基金(61271335)资助项目
关键词 压缩感知 谱减法 正交匹配追踪 语音增强 行阶梯观测矩阵 compressed sensing spectral subtraction orthogonal matching pursuit speech enhance-ment row echelon measurement matrix
  • 相关文献

参考文献15

  • 1DONOHO D L. Compressed sensing [ J]. IEEE Transac-tions on Information Theory, 2006,52(4) : 1289 — 1306.
  • 2CANDES E J, ROMBERG J,TAO T. Robust uncertaintyprinciples : Exact signal reconstruction from highly incom-plete frequency information [ J ]. IEEE Transactions on In-formation Theory,2006,52(2) :489 -509.
  • 3TSAIG Y,DONOHO D. Extensions of compressed sensing[J]. Signal Processing,2006,86(3) :533 -548.
  • 4BOLL S F. Suppression of acoustic noise in speech usingspectral subtraction[ J]. IEEE Transactions on Acoustics,Speech, and Signal Processing, 1979,27 ( 2 ) : 113 - 120.
  • 5BEROUTI M,SCHWARTZ R,MAKHOUL J. Enhancementof speech corrupted by acoustic noise[ C] //IEEE Interna-tional Conference on Acoustics, Speech and Signal Process-ing(ICASSP). 1979:208 -211.
  • 6HU Y,LOIZOU PC. A generalized subspace approach forenhancing speech corrupted by colored noise [ J ]. IEEETransactions on Speech and Audio Processing,2003,11(4):334-341.
  • 7GOLDSTEIN J S,REED I S,SCHARF L L. A multistagerepresentation of the Wiener filter based on orthogonal pro-jections [J ]. IEEE Transactions on Information Theory,1998,44(7) :2943 -2959.
  • 8孙林慧,杨震.基于自适应基追踪去噪的含噪语音压缩感知[J].南京邮电大学学报(自然科学版),2011,31(5):1-6. 被引量:20
  • 9叶蕾,杨震.基于压缩感知的语音压缩与重构[J].南京邮电大学学报(自然科学版),2010,30(4):57-60. 被引量:3
  • 10叶蕾,杨震,王天荆,孙林慧.行阶梯观测矩阵、对偶仿射尺度内点重构算法下的语音压缩感知[J].电子学报,2012,40(3):429-434. 被引量:22

二级参考文献170

  • 1乔建华,张井岗,张雪英.基于MATLAB的8kb/s CS-ACELP语音编码算法及实现[J].仪器仪表学报,2002,23(z1):194-195. 被引量:1
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3孔红山,朱良学,章四兵.FS-1016 CELP语音编码的算法仿真[J].合肥工业大学学报(自然科学版),2006,29(10):1227-1230. 被引量:1
  • 4R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 5Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 6Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 7E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 8E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 9Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 10G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.

共引文献834

同被引文献18

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部