期刊文献+

预置舵角对高速入水弹道和流体动力的影响 被引量:10

Influence of preset rudder angle on trajectory and hydro-dynamic at high-speed water-entry
下载PDF
导出
摘要 为了实现导弹以反复入水方式进行末段突防,需要形成向上弯曲的弹道,考虑采用预置舵角的方法迫使弹体在超空泡流动条件下作抬头转动,依靠攻角产生的尾部滑行力提供转平所需的法向过载。本文研究了具有细长前锥段外形的超空泡导弹在高速入水时弹道和流体动力的情况。利用动网格技术控制弹体以及整个计算区域的运动,采用Mixture方法描述气-液界面的运动变化;通过流场-弹道耦合方法,分析了通气条件下,0°~30°范围内不同预置舵角下入水弹道与流体动力的变化规律。研究结果表明,预置舵角可以控制弹道转平,且预置舵角越大弹道越容易转平。 To realize the missile terminal penetration method with repeatedly water-entry and water-exit,the trajectory needs curve upward. So the preset rudder angle method is considered to force the missile turn the rise, and the normal overload making the missile horizontal orientation are gained depending on the tail glide force from angle of attack. The trajectory and hydro-dynamic of a model are studied in the high-speed water-entry process. And the model with cone-shaped segment has slendersuper-cavity missile shape. The dynamic meshes are used to control the motions of the missile and the calculated zone, mixture model is used to capture the movement of the air-water interface. Through the flow field- trajectory coupling, the changing law of the trajectory and hydro-dynamicare gained in the ventilated condition with different preset rudder angle in the range of 0 degree to 30 degrees at high-speed. The result shows that the preset rudder angle can realize the horizontal orientation control, and the larger the preset rudder angle is, the easier the horizontal orientation control.
作者 袁绪龙 朱珠
出处 《应用力学学报》 CAS CSCD 北大核心 2015年第1期11-16,168,共6页 Chinese Journal of Applied Mechanics
基金 国家自然基金(11172241)
关键词 高速入水 预置舵角 通气 弹道 流场-弹道耦合 high-speed water-entry preset rudder angle ventilation trajectory flow field-trajectory coupling
  • 相关文献

参考文献11

二级参考文献29

  • 1朱璘,王航宇.掠海飞行反舰导弹攻击效果仿真研究[J].微计算机信息,2008,24(10):246-247. 被引量:7
  • 2顾建农,张志宏,郑学龄,金连宝.弹体入水弹道研究综述[J].海军工程大学学报,2000,12(1):18-23. 被引量:20
  • 3覃新川,黄胜,常欣.三维短翼的水动力性能计算研究[J].哈尔滨工程大学学报,2007,28(6):621-624. 被引量:4
  • 4赵连恩.高性能船舶水动力原理与设计[M].哈尔滨:哈尔滨工程大学出版社,2000.
  • 5[1]Mark A P,Eloret C,etc. A Parallel Multiblock Mesh Movement Scheme For Complex Aeroelastic Applications[R]. AIAA-2001-0716.
  • 6[2]Peter M H,Shreekant A. Method For Perturbing Multiblock Patched Grids In Aeroelastic And Design Optimization Applications[R]. AIAA-97-2038.
  • 7[3]Jones W T,Samareh-Abolhassani J. A Grid Generation System for Multi-Disciplinary Design Optimization[R]. AIAA-95-1689-CP.
  • 8[4]Robinson B A,Batina J T.Yang H T Y. Aeroelastic Analysis of Wings Using the Euler Equations with a Deforming Mesh[J]. Journal of Aircraft,1991,28(11):781-788.
  • 9[5]Reuther J,Alonso J,Jrimlinger M J,Jameson A. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Parallel Computers[R]. AIAA Paper 96-4045.
  • 10[6]Wong A,Tsai H,Cai J, etc. Unsteady Flow Calculations With A Multi-Block Moving Mesh Algorithm[R]. AIAA Paper 2000-1002.

共引文献71

同被引文献123

引证文献10

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部