期刊文献+

一种基于树核函数的半监督关系抽取方法研究 被引量:2

A semi-supervised method based on tree kernel for relationship extraction
原文传递
导出
摘要 为了解决传统的半监督关系抽取算法易产生的"语义变异"问题,提出一种新的基于树核函数的半监督关系抽取算法。该算法主要采用树核函数和种子集约束扩展两个策略,弱化"语义变异"现象带来的关系抽取不够准确的问题,提高关系识别的正确率。在基准数据集Pop Bank上的试验研究表明,提出的使用约束机制扩充种子集的半监督学习方法在4个评价指标上(Precision,Recall,F-measure,Accuracy)均优于常用的两种关系抽取方法,从而验证了该算法与其他算法相比能够具有较好的关系抽取能力。 It was difficult for traditional semi-supervised relation extraction methods to solve "semantic variation" prob- lem. A new semi-supervised relation extraction algorithm based on ensemble learning was prorosed and named L-EC- RE, which used two strategies, one was tree kernel and the other was constrained extension seed set. Experimental study on PopBank benchmark data sets showed that L-EC-RE had better performance than two usual relation extraction algorithms in four assessment criteria, which were Precision, Recall, F-measure and Accuracy.
作者 刘晓勇
出处 《山东大学学报(工学版)》 CAS 北大核心 2015年第2期22-26,32,共6页 Journal of Shandong University(Engineering Science)
基金 广东高校优秀青年教师培养计划资助项目(Yq2013108)
关键词 关系抽取 树核函数 支持向量机 半监督方法 语义变异 :relationship extraction tree kernel support vector machine semi-supervised method semantic variation
  • 相关文献

参考文献24

  • 1MONCECCHI G, MINEL J L, WONSEVER D. A survey of kernel methods for relation extraction E C ]//Proceed- ings of Workshop on NLP and Web-based technologies. Bahia Blanca, Argentine:Springer, 2010:1-9.
  • 2ZHANG Z. Weakly-supervised relation classification for information extraction E C ]//Proceedings of the thirteenth ACM international conference on Information and knowl- edge management. Washington D C, USA : ACM, 2004 : 581-588.
  • 3CHEN J, JI D, TAN C L, et al. Relation extraction using label propagation based semi-supervised learning ~ C ~// Proceedings of the 21st International Conference on Com- putational Linguistics and the 44th annual meeting of the Association for Computational Linguistics. Sydney, Aus- tralia: Association for Computational Linguistics, 2006 : 129-136.
  • 4CHEN J, JI D, TAN C L, et al. Semi-supervised relation extraction with label propagation ~ C ]//Proceedings of the Human Language Technology Conference of the NAACL. New York, USA:Association for Computational Linguis- tics, 2006:25-28.
  • 5QIAN L, ZHOU G, KONG F, et al. Semi-supervised learning for semantic relation classification using stratified sampling strategy[ C ]//proceedings of the 2009 Confer- ence on Empirical Methods in Natural Language Process- ing. Singapore: Association for Computational Linguis- tics, 2009 : 1437-1445. ?.
  • 6ROZENFELD B, FELDMAN R. Self-supervised relation extraction from the Web [ J 1. Knowledge and Information Systems, 2008, 17 ( 1 ) : 17-33.
  • 7GREENWOOD M A, STEVENSON M. Improving semi- supervised acquisition of relation extraction pattems~ C ~// Proceedings of the Workshop on Information Extraction Beyond the Document. Sydney, Australia: Association for Computational Linguistics, 2006:29-35.
  • 8XU F Y, USZKOREIT H, LI H. A seed-driven bottom- up machine learning framework for extracting relations of various complexity [ C ]//Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. Prague, Czech Republic: Association for Computational Linguistics, 2007 : 584-591.
  • 9XU F Y, USZKOREIT H, LI Hong, et al. Adaptation of Relation Extraction Rules to New Domains E C ]//Proceed- ings of the Poster Session of the Sixth International Con- ference on Language Resources and Evaluation. Marra- kech, Morocco: European Language Resources Associa- tion, 2008:2446-2450.
  • 10USZKOREIT H, XU F Y, LI H. Analysis and Improve- ment of Minimally Supervised Machine Learning for Rela- tion Extraction[M]//HORACEK H, METALS E, MU- NOZ R, et al. Natural Language Processing and Informa- tion Systems. Berlin : Springer-Verlag Berlin, 2010:8-23.

二级参考文献87

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2李杨,都思丹.小波域分形编码数字水印的研究(英文)[J].南京大学学报(自然科学版),2006,42(4):373-383. 被引量:2
  • 3张素香,文娟,秦颖,袁彩霞,钟义信.实体关系的自动抽取研究[J].哈尔滨工程大学学报,2006,27(B07):370-373. 被引量:10
  • 4何婷婷,徐超,李晶,赵君喆.基于种子自扩展的命名实体关系抽取方法[J].计算机工程,2006,32(21):183-184. 被引量:25
  • 5董静,孙乐,冯元勇,黄瑞红.中文实体关系抽取中的特征选择研究[J].中文信息学报,2007,21(4):80-85. 被引量:55
  • 6CHAPELLE O, SCHOLKOPF B, ZIEN A.Semi-supervised learning[M]. Cambridge MA: M1T Press, 2006.
  • 7BLUM A, MITCHELL T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the 11th Annual Conference on Computational Learning Theory. New York: ACM Press, 1998: 92-100.
  • 8DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B, 1977, 39(1):1-38.
  • 9JOACHIMS T. Transductive inference for text classification using support vector machines[C]//Proceedings of the 16th International Conference on Machine Learning. San Fransisco: [s.n.], 1999: 200-209.
  • 10BELKIN M, MATVEEVA I, NIYOGI P. Regression and regularization on large graphs[C]//Proeeodings of the 17th Annual Conference on Learning Theory. New York: ACM Press, 2004: 185-192.

共引文献83

同被引文献24

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部