期刊文献+

给定k-错线性复杂度的2~n-周期二元序列条数及Matlab程序

The Number of 2~n-period Binary Sequences of a Given k-error Linear Complexity and Matlab Program
下载PDF
导出
摘要 k-错线性复杂度是流密码研究的重要指标,当序列中的几位出错不会使序列的线性复杂度急剧下降,这说明该序列的稳定性良好.运用Chan-Games算法给出了满足LC2 n,4(s)=0、LC2 n,4(s)=2n-2m-2r+1+c的序列条数分别为(2m-1)2×24n-2m-6、22 n-2 m-2 r+1+c+2r-1,(2≤r≤m-1、1≤c≤2r-2),以及利用Matlab程序给出满足这些条件的所有序列.这一结论对于研究流密码稳定性有一定的应用价值. k-error linear complexity is an important indicator of stream ciphers research. When some are wrong in a sequence,which will not lead to the sharp reduction of linear complexity,so the sequences are more stable. In this paper,using Chan-Games algorithm gives the number of sequences with LC2 n,4(s) = 0、LC2n,4(s) = 2n-2m-2r + 1+ c,respectively(2m-1)2× 24n-2m-6、22n-2m-2r + 1+ c + 2r-1,(2≤r≤m-1、1≤c≤2r-2),and using Matlab program it gives all sequences that satisfy these conditions. The result has an important application value for studying the stability of stream cipher.
作者 梁静 潘娟娟
出处 《平顶山学院学报》 2015年第2期77-80,共4页 Journal of Pingdingshan University
关键词 K-错线性复杂度 周期序列 Chan-Games算法 MATLAB程序 k-error linear complexity period sequences Chan-Games algorithm Matlab program
  • 相关文献

参考文献6

  • 1Stamp M, Martin C F. An Algorithm for the k - error LinearComplexity of Binary Sequences with Period 2"[ J ]. IEEE Trans Inform Theory, 1993,39 (4) : 1398 - 1401.
  • 2Meidl W. On the stability of 2" - periodic binary se- quences [ J ]. IEEE Trans on Information Theory, 2005,51 (3) :1151 - 1155.
  • 3谭林,戚文峰.F2上2^n-周期序列的k-错误序列[J].电子与信息学报,2008,30(11):2592-2595. 被引量:13
  • 4朱士信,梁静.线性复杂度为2^n-2^m-1的2^n-周期二元序列的k-错线性复杂度[J].计算机应用研究,2012,29(3):1104-1106. 被引量:2
  • 5Fu F W, Niderreiter H, Su M. The characterization of 2 - periodic binary sequences with fixed 1 - error linear com- plexity [ C ]. Heidelberg: Proc of SETA,2006 : 88 - 103.
  • 6Games R A, Chan A H. A fast algorithm for determining the complexity of a binary sequences with period 2n [ J ]. IEEE Trans Inform Theory, 1983,29( 1 ) :144 -146.

二级参考文献8

  • 1Zhu Fengxiang Qi Wenfeng.THE 2-ERROR LINEAR COMPLEXITY OF 2~n-PERIODIC BINARY SEQUENCES WITH LINEAR COMPLEXITY 2~n-1[J].Journal of Electronics(China),2007,24(3):390-395. 被引量:21
  • 2DING Cun-sheng, XIAO Guo-zhen. The stability theory of stream ci- phers [M]. Berlin: Springer-Verlag,1991.
  • 3STAMP M, MARTIN C F. An algorithm for the k-error linear com- plexity of binary sequences with period 2^n [ J]. IEEE Trans on Infor- mation Theory, 1993,39 (4) : 1398-1401.
  • 4KUROSAWA K,SATO F,SAKATA T, et al. A relationship between linear complexity and k-error linear complexity [ J]. I EEE Trans on Information Theory,2000,46(2):694-698.
  • 5MEIDL W. On the stability of 22^n-periodic binary sequences [ J ]. IEEE Trans on Information Theory ,2005,51 ( 3 ) : 1151 - 1155.
  • 6GAMES R A, CHAN A H. A fast algorithm for determining the com- plexity of a binary sequence with period 2^n [ J]. IEEE Trans on In- formation Theory, 1983,29 ( 1 ) : 144-146.
  • 7FU Fang-wei, NIEDERREITER H, SU Ming. The characterization of 2^n-periodic binary sequences with fixed 1-error linear complexity [ C ]//Proc of SETA. Berlin : Springer, 2006:88-103.
  • 8谭林,戚文峰.F2上2^n-周期序列的k-错误序列[J].电子与信息学报,2008,30(11):2592-2595. 被引量:13

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部