期刊文献+

基于寄生模型的粒子群算法在气动优化中的应用 被引量:2

Applying a New SPPSO Algorithm to Airfoil Aerodynamic Optimization
下载PDF
导出
摘要 为了解决粒子群算法(PSO)在寻优过程中全局最优和局部最优的矛盾,通过在粒子群算法中加入寄生模型,发展了一种基于寄生模型的改进粒子群算法(SPPSO)。对提出的模拟寄生算法(SP)进行了分析与验证,并将其引入到粒子群算法中,丰富了粒子之间的优势信息源,增强了粒子的信息共享能力,使得SPPSO算法能够有效地跳出局部最优。函数测试表明,该算法显著提高了PSO算法的寻优性能。将SP及SPPSO算法应用于翼型的气动优化设计中,取得了良好的效果,从而表明提出的算法准确有效,具有良好的实用性。 In order to solve the contradiction between global optimization and local optimization in the particle swarm optimization(PSO),a new algorithm(SPPSO) combining particle swarm optimization with simulated parasitic model is presented. The simulated parasitic(SP) algorithm,after being analyzed and validated,is introduced into the particle swarm algorithm. It enriches the source of information among the particles and enhances the information sharing ability so that the SPPSO algorithm can effectively avoid local optimization. Function tests show preliminarily that,this algorithm can improve the performance of the PSO algorithm. Applying SPPSO algorithm to the airfoil aerodynamic optimization design,we achieve good results,thus showing that the proposed algorithm is effective and practical.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2015年第2期178-184,共7页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(11172242)资助
关键词 空气动力学 阻力系数 全局优化 粒子群算法 寄生模型 模拟寄生算法 翼型气动优化设计 攻角 压力分布 雷诺数 数值方法的收敛性 有效性 aerodynamics drag coefficient global optimization particle swarm optimization(PSO) SP(Simulated Parasitic) SPPSO algorithm airfo
  • 相关文献

参考文献7

  • 1李丁.智能优化算法及其在气动优化设计中的应用研究[D].西安:西北工业大学,2011.
  • 2Kennedy J, Eberhart R C. Particle Swarm Optimization [ C ]//Proceedings of the 1995 IEEE International Conference on Neural Networks Perth, WA, Australia, 1995:1942-1948.
  • 3胡建秀,曾建潮.微粒群算法中惯性权重的调整策略[J].计算机工程,2007,33(11):193-195. 被引量:62
  • 4罗卫东.寄生生物在统治世界?[J].大自然探索,2001(7):10-12. 被引量:1
  • 5孙腾腾,夏露.基于代理模型的群智能算法在气动优化设计中的应用[D].西安:西北工业大学,2014.
  • 6Boyd R, Recharson P. Culture and the Evolutionary Process[ M ]. Chicago: University of Chicago Press, 1985.
  • 7Ray T. Swarm Algorithm for Single-and Mutiobjective Airfoil Design Optimization [ J]. AIAA Journal, 2004,42(2) :366-373.

二级参考文献11

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2高尚,杨静宇,吴小俊,刘同明.基于模拟退火算法思想的粒子群优化算法[J].计算机应用与软件,2005,22(1):103-104. 被引量:51
  • 3王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:85
  • 4杨亚平,曾建潮.微粒群与单纯形相结合的混合优化[C]//2005年中国模糊逻辑与计算智能联合学术会议论文集.2005,804—807.
  • 5Kennedy J,Eberhart R C.Particle Swarm Optimization[C]//Proc.of IEEE Int'l.Conf.on Neural Networks,Piscataway.IEEE Service Center,1995:1942-1948.
  • 6Shi Y,Eberhart R C.A Modified Particle Swarm Optimization[C] //Proceedings of the Congress on Evolutionary Computation,Piscataway.IEEE Press,1998:69-73.
  • 7Shi Y,Eberhart R C.Empirical Study of Particle Swarm Optimization[C]//Proceedings of the Congress on Evolutionary Computation,Piscataway.IEEE Service Center,1999:1945-1950.
  • 8Ratnaweera A,Halgamuge S K,Watson H C.Self-organizing Hierarchical Particle Swarm Optimizer With Time-varying Acceleration Coefficients[J].IEEE Transactions on Evolutionary Computation,2004,8(3):240-255.
  • 9Xie X F,Zhang W J,Yang Z L.A Dissipative Particle Swarm Optimization[C]//Proceedings of the Congress on Evolutionary Computation (CEC),Hawaii,USA.2002:1456-1461.
  • 10Zhang W J,Xie X F.DEPSO:Hybrid Particle Swarm with Differential Evolution Operator[C]//Proc.of IEEE Int.Conf.on Systems,Man & Cybernetics,Washington D C,USA.2003:3816-3821.

共引文献61

同被引文献19

  • 1Jeong S W,Park S,Jin J S, et al. Influences of four different light-emitting diode lights on flowering and polyphenol variations in the leaves of Chrysanthemum (Chrysanthemum morifolium)[J]. Journal of agricul- tural and food chemistry,2012,60(39): 9793- 9800.
  • 2Moreno I,Avendafi o-Alejo M,Tzonchev R I. Desig- ning light-emitting diode arrays for uniform near-field irradiance[J]. Applied optics, 2006,45 (10) : 2265 -2272.
  • 3Su Z,Xue D,Ji Z. Designing LED array for uniform illumination distribution by simulated annealing algo- rithm[J] . Optics express, 2012, 20 (106): A843 - A855.
  • 4Lei P,Wang Q,Zou H. Designing LED array for uni- form illumination based on local search algorithm[J]. Journal of the European Optical Society-Rapid publi- cations, 2014,9 : 14014.
  • 5Kenndy J ,Eberhart R C. Particle swarm optimization [C]// Proceedings of IEEE International Conference on Neural Networks, Perth, Australia: IEEE, 1995: 1942 - 1948.
  • 6崔瑾,徐志刚,邸秀茹.LED在植物设施栽培中的应用和前景[J].农业工程学报,2008,24(8):249-253. 被引量:170
  • 7江彬,吴大焰,高西奇.基于遗传算法的OFDM系统导频设计[J].东南大学学报(自然科学版),2008,38(5):746-751. 被引量:4
  • 8周国泉,郑军,周益民,储修祥,倪涌舟.温室植物生产用LED组合光源的优化设计[J].光电子.激光,2008,19(10):1319-1323. 被引量:18
  • 9肖健梅,李军军,王锡淮.梯度微粒群优化算法及其收敛性分析[J].控制与决策,2009,24(4):560-564. 被引量:19
  • 10张海辉,杨青,胡瑾,樊宏攀,代建国,赵斌.可控LED亮度的植物自适应精准补光系统[J].农业工程学报,2011,27(9):153-158. 被引量:44

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部