期刊文献+

基于块匹配置信度的隧道交通背景提取算法 被引量:4

Background Extraction Algorithm for Tunnel Traffic Based on Confidence of Block Matching
下载PDF
导出
摘要 针对隧道交通环境变化特点,采用改进的统计直方图法进行背景提取,并提出一种基于块匹配置信度的背景更新算法。实验结果表明,该算法既能满足缓慢变化场景的更新,又克服了当场景中出现慢行目标或目标长时间停留出现的拖尾和目标混入的现象,而且计算复杂度低,背景提取迅速,适合交通状况实时检测的要求。 Due to the changing characteristics of tunnel traffic environment, the improved statistical histogram method is used for background extraction, and a new algorithm based on the confidence of block matching for background updating is presented. The experimental results show that this algorithm can satisfy the slowly changing scene updating, and overcome the phenomenons of trailing when there are slow objects or objects stopping for a long time in the scence. This algorithm has lower complexity, requires less calculation and has good real-time performance for tunnel traffic detection.
出处 《电视技术》 北大核心 2015年第8期59-63,共5页 Video Engineering
基金 中央高校基本科研业务费专项资金项目(CHD2011TDO12) 西安石油大学青年科技创新基金项目(2011QN009) 陕西省教育厅专项科研计划项目(14JK1584) 西安市科技计划项目(CXY1346(7))
关键词 隧道交通 视频检测 背景提取 背景更新 置信度 tunnel traffic video detection background extraction background updating confidence degree
  • 相关文献

参考文献13

  • 1MANUEL V, JOSE M M, FEDERICO B. An enhanced back- ground estimation algorithm for vehiele detection in urban traffic scenes[J]. IEEE Trans. Vehicular Technology, 2010, 59 (8) : 3694-3709.
  • 2STAUFFER C,GRIMSON W. Adaptive background mixture mod- els for real-time tracking[C1//Proc. Computer Vision and Pattern Recognition. LISA : IEEE Press, 1999 : 246-252.
  • 3徐伟,谢正光,张辉,马文萱.一种基于混合高斯的快速背景更新方法[J].电视技术,2014,38(15):240-243. 被引量:1
  • 4EI,GAMMAL A, DURAISWAM R, DAVIS L S. Eflieient kernel density estimation using the fast Gauss transfi)rm with applica- tion to segmentation and traeking[C]//Proc, the 8+ IEEE Interna- tional Conference on Computer Vision. Canada: IEEE Press, 2001,25( 11 ) : 1499-1504.
  • 5李洁,杨孟拓,刘雪琴,宋焕生,李文敏.改进的道路背景提取与更新算法[J].电视技术,2013,37(11):194-197. 被引量:1
  • 6袁基炜,史忠科.一种快速运动目标的背景提取算法[J].计算机应用研究,2004,21(8):128-129. 被引量:15
  • 7曾艳,于濂.一种新的道路交通背景提取算法及研究[J].中国图象图形学报,2008,13(3):593-599. 被引量:18
  • 8KAEW T P, BOWDEN R. An improved adaptive background mix- ture model for reahime tracking with shadow detection[C]// Prnc. the 2rid European Worksbup nn Advanced Video Based Surveil- lanee Systems, Kingston: Kluwer Academic Publishers, 2001,53 (8): 1-5.
  • 9ZIVKOVIC Z, VANDER H F. Recursive unsupervised learning of finite mixture models[J]. IEEE Trans. Pattern Analysis and Ma- chine Intelligence, 2004,26(5 ) : 651-656.
  • 10ANURAG M, NIKOS P. Moti.n-Based background subtraction using adaptive kernel density estimatinn[C]// Proc. the 2004 IEEE Conference on Computer Vision and Pattern Reeognition. USA : IEEE Press, 2004,2 : 302-309.

二级参考文献36

  • 1袁基炜,史忠科.一种快速运动目标的背景提取算法[J].计算机应用研究,2004,21(8):128-129. 被引量:15
  • 2王源,陈亚军.基于高斯混合模型的EM学习算法[J].山西师范大学学报(自然科学版),2005,19(1):46-49. 被引量:18
  • 3Surendra Gupte, et al. Detection and Classification of Vehicles [ J ].IEEE Transactions on Intelligent Transportation Systems, 2002, (3):37-47.
  • 4W Liu ,J Zhang. Image Sequence Segmentation Using Curve Evolution and Improved Background Subtraction [ C ]. Proceedings of SPIE,2001.1-7.
  • 5Luc Vincent. Morphological Grayscale Reconstruction in Image Analysis: Applications and Efficient Algorithms [ J ]. IEEE Transactions on Image Processing, 1993, ( 2 ): 176 - 201.
  • 6李志勇,沈振康,杨卫平等.动态图像分析[M].北京:国防工业出版社,1999
  • 7Surendra Gupte, Osama Masoud, Robert F K Martin, et al. Detection and classification of vehicles [ J ]. IEEE Transactions on Intelligent Transportation Systems,2002,3 ( 1 ) :37 - 47.
  • 8Friedman Nir,Russell Stuart. Image segmentation in video sequences: A probabilistic approach [ A ] . In: Proceedings of UAI'97 the Thirteernth Annual Conference on Vncertainty Artificial Intelligendce [ C ]. Providence, Rhode Island, USA, 1997 : 175 - 181.
  • 9Power P Wayne, Schoonees Johann A. Understanding background mixture models for foreground segmentation [ A ]. In : Proceedings of Image and Vision Computing [ C ]. Auckland, New Zealand, 2002 : 267 - 271.
  • 10Elgammal Ahmed M, Harwood David, Davis Larry. Non-parametric model for background subtraction [ A ] . In: Proceedings of ECCV'2000 the Sixth European Conference on Computer Vision [ C ]. Dublin Ireland ,2000:751 - 767.

共引文献30

同被引文献20

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2LEVIN A,LISCHINSKI D, WEISS Y. A closed form solution to nat- ural image matting[ C ]//Proc. IEEE Computer Society Conterence on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Press, 2006 : 61-68.
  • 3GASTAL E S L,OI,IVEIRA M M. Shared sampling tbr real-time al- pha matting [ J ]. Computer Graphics Forum, 2010, 29 ( 2 ) : 575 -584.
  • 4SHAHRIAN E, RAJAN D,PRICE B,et. al. Improving image matting using comprehensive sampling sets[C]//Proc. IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Press, 2013 : 636-643.
  • 5GRADY L,SCHIWIETZ T,AHARON S,et. al. Randomwalks for in- teractive alpha-maning[ C]//Proc. 5th lASTED International Con- fcrence on Visualization, Imaging and hnage Processing. Calgary: ACTA Press,2005:423-429.
  • 6HE K M,SUN J,TANG X O. Fast matting using large kernel matting laplacian matrices[ C ]//Proc. IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Press. 2010: 2165-2172.
  • 7ZHANG Z P, ZHU Q S, XIE Y Q,l,earning based alpha matting u- sing support vector regression[ C ]//Proc. 19th IEEE Conference on International hnage Processing. Los Alamitos: IEEE Press, 2012: 2109-2112.
  • 8LEE P,WU Y. Nonlocal matting[ C]//Proc. IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos:IEEE Press, 2011:2193-2200.
  • 9CHEN Q F, LID Z Y, TANG C K. Knn matting[ C]//Proc. IEEE CVPR ( 2012 ). Los Alamitos : IEEE Press ,2012 : 869-876.
  • 10CItEN X W, ZHOU D Q, ZHOU Z Y, et. al. Image matting with local and nonlocal smooth priors [ C ]//Pmc. IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Press, 2013 :1902 - 1907.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部