摘要
在进行民航客机航线选取过程中,最优路线的选择受到天气、航空管制、航路冲突等因素的影响,应该路线选择的因素较为复杂,采用传统的方法进行航线选择,以单一影响因素指标相互独立为基础,通过设定特定权值作为选择的衡量标准,一旦航行线路影响因素发生波动,固定权值无法对其进行有效描述,航路选择中的挖掘结果无法达到最优。提出基于改进蚁群微正则退火算法的民航客机最佳航线挖掘模型。依据模糊综合评价理论,综合环境状态、航线状况及冲突情况多种因素对航线进行综合评价,计算航线权值,建立民航客机最佳航线的挖掘模型,获取初始路径搜索集合,利用双层循环结构理论,计算内外层循环结果,直至满足算法输出条件,实现民航客机最佳航线的挖掘。实验结果表明,利用改进算法进行民航客机最佳航线的挖掘,可以有效的提高航线选择的精度。
An optimal route mining model of civil aviation passenger plane was proposed based on improved ant colony micro regular annealing algorithm. Based on the theory of fuzzy comprehensive evaluation, various factors of environmental status, airline status and conflicts were integrated to make comprehensive evaluation on the routes, calculate the weight of airline, establish an optimal route mining model of civil aviation passenger plane, and obtain the initial path search set. Using the theory of double - deck loop structure, we calculated the circulation results of both inside and outside layers, until meet the output condition of algorithm, to realize the optimal route mining of civil aviation passenger plane. The experimental results show that using the improved algorithm for optimal route mining of civil aviation passenger plane, can effectively improve the accuracy of route selection.
出处
《计算机仿真》
CSCD
北大核心
2015年第4期91-94,共4页
Computer Simulation
关键词
最佳航线
路径搜索
蚁群微正则退火算法
Optimal route
Path search
Ant colony micro regular annealing algorithm