期刊文献+

一株耐铜细菌TLSB_2-K的鉴定及其铜吸附能力 被引量:5

Identification and Absorption Ability of Copper- resistant Bacteria TLSB_2- K
下载PDF
导出
摘要 通过形态观察、革兰氏染色和16Sr DNA序列比对,对前期分离的菌株TLSB2-K进行了鉴定,并采用振荡培养法,探讨了温度、p H值和渗透压对菌株生长的影响,以及铜胁迫下菌株对铜的耐性及吸附能力。结果表明,TLSB2-K属于芽孢杆菌属,其最适生长条件为:温度27℃、p H值7、渗透压1.1%Na Cl。铜胁迫下菌株生长周期缩短。铜浓度在100~500 mg/L的范围内,菌体生长良好,铜浓度为100 mg/L时胁迫培养25 h,菌体铜含量为1 253.4 mg/kg;铜浓度为200 mg/L和300 mg/L时胁迫培养30 h,菌体铜含量分别达到2 087.2 mg/kg和2 188.4 mg/kg;菌株的最高铜耐受浓度为700 mg/L。实验结果证实,菌株TLSB2-K具有较强的铜耐性和较高的铜吸附能力,其具有重要的理论研究和工程应用价值。 A bacterial strain TLSB2 - K separated in earlier stage was identified by morphological observation, gram stain and 16SrDNA sequence alignment. The influence of temperature ,pH value and osmotic pressure to the bacterial strain's growth, and the capability of endurance and absorption for copper under copper stress conditions were explored by the method of shaking culture. The result showed that strain TLSB2 - K was pri- marily identified as Bacillus sp. from its morphological, its optimum temperature was 27 ℃, optimum pH was 7 and it grew best under 1.1% NaC1. The growth cycle was shortened under the copper stress condition. Strains grew well in copper concentration of 100 -500 mg/L. when cultivated them about 25 hours in 100 mg/L copper concentration, the strains'copper content would reach to 1 253.4 mgcZkg. While cultivated them about 30 hours and the copper concentration were in 200 and 300 mg/L,the copper content of TLSB2 -K were 2 087.2 mg/kg and 2 188.4 mg/kg respectively. What the highest copper concentration TLSB2 - K could live in was 700 mg/L. All of these confirmed that TLSB2 - K had a strong capability of copper endur- ance and absorption,which showed a great significance in theoretical research and engineering practice.
出处 《湖北理工学院学报》 2015年第2期12-15,21,共5页 Journal of Hubei Polytechnic University
基金 湖北理工学院大学生科技创新项目(项目编号:12cx31) 湖北理工学院校级科研项目(项目编号:12xjz38Q) 湖北省教育厅青年基金项目(项目编号:Q2014402)
关键词 土壤污染 耐铜 芽孢杆菌 分子鉴定 Cu吸附能力 soil contamination copper resistance Bacillus sp molecular identification Cu absorption capacity
  • 相关文献

参考文献8

  • 1Fujimori T, Takigami H. Pollution distribution of heavy metals in surface soil at an informal elec- tronic - waste recycling site [ J ]. Environ. Geo- chem. Health ,2014,36 : 159 - 168.
  • 2杨建英,赵廷宁,赵方莹,等.矿业废弃地生态恢复材料与应用技术研究[M].北京:科学技术出版社,2012:1-14.
  • 3Mani D, Kumar C. Biotechnological advances in bioremediation of heavy metals contanminated e-cosystems:an overview with special reference to phytorenediation [ J]. Int. J. Environ. Sci. Techn- ol,2014,11 (3) :843 - 872.
  • 4徐云,鲁旭阳,申旭红.重金属污染对土壤微生物影响的研究进展[J].湖北农业科学,2008,47(12):1506-1508. 被引量:8
  • 5薛高尚,胡丽娟,田云,卢向阳.微生物修复技术在重金属污染治理中的研究进展[J].中国农学通报,2012,28(11):266-271. 被引量:68
  • 6郑进,康薇.湖北铜绿山古铜矿野生蓖麻重金属含量研究[J].黄石理工学院学报,2009,25(1):36-40. 被引量:20
  • 7Aloice W M, Tatsuya N. Effects of temperature and pH on the growth of heterotrophic bacteria in waste [ J ]. Water Research, 1996,30 ( 2 ) : 447 - 455.
  • 8Sanchez A, Ballester A, Blazquez ML, et al. Bio- sorption of copper and zinc by Cymodocea nodosa [ J ]. FEMS Microbiol Rev., 1999 (23) : 527 - 536.

二级参考文献49

共引文献89

同被引文献101

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部