期刊文献+

基于MatLab和DSP的哈密瓜纹理分割与分类

Texture Segmentation and Classification of Hami Melon Based on MatL ab and DSP
下载PDF
导出
摘要 以新疆特色水果哈密瓜为研究对象,提出一种利用Matlab辅助DSP提取哈密瓜纹理的方法。该方法首先利用Matlab把待处理的图像转换为数据文件(dat文件),然后利用DSP强大的运算能力分割哈密瓜表面纹理特征,并将分割结果同样以dat文件传递给Mat Lab,最后利用Mat Lab强大的数据分析与图像显示能力建立哈密瓜分类模型。实验结果表明,该方法能够有效地对哈密瓜表面纹理进行分割与分类,分类准确率为88.10%。该方法不但能够缩短DSP系统的开发周期,且能够为今后开发基于DSP的哈密瓜品质实时检测系统奠定基础。 In this study, Hami melon which is a characteristic fruit in Xinjiang was taken as the research object.The method of surface texture feature segmentation using Matlab and DSP was put forward.First, the original image was transformed to data file (*.dat) .Then, texture features of Hami melon was segmented using DSP, and the result was then imported into Matlab in the format of DAT .Finally, classification model of Hami melon was established with the function of data analysis and image display.The results showed that this method can effective classify Hami melon based on the surface texture feature segmentation.The accuracy was 88.10 %.The development period of DSP system was shortened, which will provide evidence for real-time detection system of Hami melon quality in the future.
出处 《农机化研究》 北大核心 2015年第7期31-34,38,共5页 Journal of Agricultural Mechanization Research
基金 国家自然科学基金项目(61263041)
关键词 MATLAB DSP 纹理分割 分类 哈密瓜 Matlab DSP texture segmentation classify hami melon
  • 相关文献

参考文献6

二级参考文献19

  • 1练秋生,尚燕,陈书贞,王林.基于DT-CWT和SVM的纹理分类算法[J].光电工程,2007,34(4):109-113. 被引量:10
  • 2解洪胜,张虹,徐秀.SVM和DT-CWT的纹理图像分类方法研究[J].中国矿业大学学报,2007,36(6):773-778. 被引量:8
  • 3Throop J A,Aneshansley D J,Anger W C. Quality evaluation of apples based on surface defects:development of an automated inspection system[J].Postharvest Biology and Technology,2005,(03):281-290.
  • 4Wen Z,Tao Y. Dual-camera NIR/MIR imaging for stem-end/calyx identification in apple defect sorting[J].Transactions of the ASAE,2000,(02):449-452.
  • 5Zou Xiaobo,Zhao Jiewen,Li Yanxiao. In-line detection of apple defects using three color cameras system[J].Computers and Electronics in Agriculture,2010,(01):129-134.doi:10.1016/j.mvr.2009.08.009.
  • 6Kleynen O,Leemans V,Destain M F. Development of a multi-spectral vision system for the detection of defects on apples[J].Journal of Food Engineering,2005,(01):41-49.doi:10.1016/j.jfoodeng.2004.07.008.
  • 7Xing J,Jancsok P,De J Baerdemaeker. Stem-end/Calyx Identification on Apple using Contour Analysis in Multispectral Images[J].Biosystem Engerneering,2007,(02):231-237.
  • 8Crowe T G,Delwiche M J. Real-time defect detection in fruit.2.An algorithm and performance of a prototype system[J].TRANSACTIONS OF THE ASABE,1996,(06):2309-2317.
  • 9David W Penman. Determination of stem and calyx location on apples using automatic visual inspection[J].Computers and Electronics in Agriculture,2001,(01):7-18.
  • 10Kingsbury N. Image processing with complex wavelets[J].Philos Trans R soc LondonA Math Phy Sci,1999.2543-2560.

共引文献228

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部