期刊文献+

一种基于群智感知的道路坑槽检测系统 被引量:2

A pothole detection system based on crowd sensing
下载PDF
导出
摘要 针对当前利用移动设备检测坑槽不能很好满足数据来源充分性与实时性的问题,提出一种基于群智感知的道路坑槽检测系统。系统利用主动参与者的Android手机中的当前时间、当前网络IP、加速度计和GPS传感器收集路面信息,并上传至中心服务器。中心服务器上对上传的数据采用统计学的方法提取相关特征,采用k-近邻算法与k-means聚类算法对坑槽进行了实时轻量级检测。实验结果表明,系统能够检测坑槽的破损等级,准确性达到82.48%。 Nowadays, using mobile device is not enough to collect sufficient and real time road surface information. A mobile crowd sensing system for pothole detection is proposed in this paper. Active participators use their Android smartphones to collect the road surface trajectory by the smartphone's current time, current internet IP, accelerometer and GPS sensors data in this system. All collected data will be transmitted to the central server. Via careful selection of signal features using statistical methods, k-nearest neighbor algorithm and k-means clustering algorithm are used to implement lightweight real time pothole detection. The experimental results show this system can detect the damage level of pothole, and the detection accuracy is up to 82.48% .
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2015年第2期436-443,共8页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(61462007)
关键词 坑槽检测 加速度计 机器学习 聚类算法 pothole detection accelerometer machine learning clustering algorithm
  • 相关文献

参考文献11

  • 1时宁,陈忠达,刘福明.沥青路面变形类病害快速检测方法[J].广西大学学报(自然科学版),2013,38(4):865-871. 被引量:6
  • 2任亮,徐志刚,赵祥模,周经美.基于Prim最小生成树的路面裂缝连接算法[J].计算机工程,2015,41(1):31-36. 被引量:15
  • 3徐婷,祝站东,郭亚,朱彤.基于机器视觉的路面破损检测系统研究[J].武汉理工大学学报(交通科学与工程版),2012,36(1):34-37. 被引量:9
  • 4TAI Y C, CHAN C W, HSU J Y. Automatic road anomaly detection using smart mobile device[ C]//Proceedings of the 2010 Conference on Technologies and Applications of Artificial Intelligence. Hsinchu, Taiwan: Taiwan University, 2010: 1-8.
  • 5MEDNIS A, STRAZDINS G, ZVIEDRIS R, et al. Real time pothole detection using Androids with accelerometers[ C]// Proceedings of the 2011 Conference on Distributed Computing in Sensor Systems and Workshops. Barcelona, Spain: IEEE, 2011:1-6.
  • 6刘云浩.群智感知计算[J].中国计算机学会通讯,2012,8(10):38-41.
  • 7ZHOU P F, ZHENG Y Q, MO L. How long to wait? Predicting bus arrival time with mobile phone based participatory sensing [ J ]. IEEE Transactions on Mobile Computing, 2014,13 ( 6 ) : 1228 -1241.
  • 8GUO B, CHEN H, YU Z, et al. FlierMeet : cross-space public information reposting with mobile crowd sensing[ C]//Pro- ceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication. Seattle, USA :ACM, 2014 : 59-62.
  • 9XU C, LI S, ZHANG Y, et al. Crowdsensing the speaker count in the wild: implications and applications[ J]. Communi- cations Magazine, IEEE, 2014, 52(10): 92-99.
  • 10GIUSEPPE C, ANDREA C, ANTONIO C, et al. Activity Recognition for smart city scenarios: Google play services vs. MoST facilities[ C ]//Proceedings of 2014 IEEE Symposium on Computers and Communication (ISCC). Funchal, Protugal : IEEE, 2014 : 1 -6.

二级参考文献44

  • 1汪恩军,陈先桥,初秀民,张黎光.车辙检测中超声测距数据采集方法[J].武汉理工大学学报,2008,30(1):138-141. 被引量:13
  • 2丁爱玲,焦李成.基于支撑矢量机的路面破损识别[J].长安大学学报(自然科学版),2007,27(2):34-37. 被引量:17
  • 3Jasper W J, Gamier S J, Potapalli H. Texture char acterization and defect detection using adaptive wave lets[J]. IEEE Transactions on Industry Applica tions, 1996,35(9): 3 140-3 149.
  • 4Chan Chiho, Pang K H G. Fabric defect detection by fourier analysis[J]. IEEE Transactions on Industry Applications, 2000,36(5): 1 267-1 276.
  • 5Tsai Du Ming, Huang Tse Yun. Automated surface inspection for statistical textures[J]. Image and Vision Computing, 2003,21(4): 307 -323.
  • 6高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2005.
  • 7KLAS B, KRZYSZTOF P, IGOR R. Models for road surface roughness [ J ]. Vehicle System Dynamics, 2012,50 (5): 725 -747.
  • 8交通部公路科学研究院,上海市公路管理处.JTGI-120-2007公路技术状况评定标准[S].北京:人民交通出版社,2008.
  • 9SAYERS M W, GILLESPIE T D, QUEIROZ C A V. The international road roughness experiment: establishing correlation and calibration standard for measurements[ R]. World Bank Technical Paper No. 45. Washington, DC: The World Bank, 1986:402.
  • 10刘云浩.群智感知计算[OL]. [2013-08-10]. http://www.cse. ust. hk/.Iiu/Crowd2012. pdf.

共引文献65

同被引文献19

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部