期刊文献+

结合肤色分割和ELM算法的静态手势识别 被引量:9

Static gesture recognition algorithm of combinating skin color segmentation with ELM
下载PDF
导出
摘要 针对目前复杂背景下手势图像识别率不高、识别困难等问题,基于ELM(extreme learning machine),提出了一种快速手势识别方法。结合RGB与HSV两种颜色空间模型,从复杂背景中去除大部分类肤色的干扰,实现手势分割;采用改进的Hu不变矩以及指尖个数对获取的手势轮廓进行描述;利用ELM进行特征数据分类,从而实现实验所采用手势的识别,其中ELM是在单隐层神经网络的基础上提出来的一种新型前馈神经网络,网络结构比较简单,输入权值和偏差随机给定的。在采用ELM识别的同时又用传统的BP网络进行了识别,结果表明:相对于BP网络,ELM具有较快的学习速度和良好的抗差能力,同时识别率比较高,适合静态手势识别。 Aiming at the problems of low image recognition rate and difficulty in gesture recognition under complicated background, a rapid gesture recognition method based on ELM (extreme learning machine) is proposed. Firstly, by combining RGB and HSV color space model and removing most classification from complex background color interference, gesture segmentation is achieved. Then, the improved geometric moment invariants and the number of fingers are used to describe the obtained gesture contour. Finally the generated characteristics data are classified by using ELM, so as to realize gesture recognition. ELM is a new type of feed forward neural networks which is proposed on the basis of single-hidden layer neural network. ELM's network structure is simpler, and the input weights and bias are randomly given. Recognition using ELM and recognition using traditional BP network are experimented respectively. The results shows that ELM is suitable for static gesture recognition, for it has faster learning speed and better resistance, and the recognition rate is higher, compared with BP network.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2015年第2期444-450,共7页 Journal of Guangxi University(Natural Science Edition)
基金 广西自然科学基金资助项目(2012GXNSFBA053144)
关键词 复杂背景 手势分割 特征提取 ELM complex background gesture segmentation feature extraction ELM
  • 相关文献

参考文献14

  • 1罗学刚,吕俊瑞,王华军,黄伟.基于超像素的互惠最近邻聚类彩色图像分割[J].广西大学学报(自然科学版),2013,38(2):374-378. 被引量:12
  • 2PHUNG S L, BOUZERDOUM A, CHAI D. Skin segmentation using color pixel classification: analysis and comparison [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27( 1 ) :148-154.
  • 3杨波,宋晓娜,冯志全,郝晓艳.复杂背景下基于空间分布特征的手势识别算法[J].计算机辅助设计与图形学学报,2010,22(10):1841-1848. 被引量:52
  • 4覃文军,杨金柱,宋相满,赵大哲.融合GVF Snake与肤色模型的手势轮廓提取方法[J].小型微型计算机系统,2013,34(6):1405-1408. 被引量:5
  • 5HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications [ J ]. Neurocomputing, 2006, 70( 1 ) :489-501.
  • 6HUANG G B, WANG D H, LAN Y. Extreme learning machines: a survey[ J]. International Journal of Machine Learning and Cybernetics, 2011,2(2) :107-122.
  • 7HU Z L, WANG G J, LIN X G, et al. Skin segmentation based on graph cuts [ J ]. Tsinghua Science and Technology. 2009,14(4) :478-486.
  • 8陶霖密,彭振云,徐光祐.人体的肤色特征[J].软件学报,2001,12(7):1032-1041. 被引量:77
  • 9GAO W, MA J Y, WU J Q, et al. Sign language recognition based on HMM/ANN[J]. International. Journal of Pattern Recognition and Artificial Intelligence, 2000, 14 (5) : 587-602.
  • 10HU M K. Visual pattern recognition by moment invariant[J]. IRE Trans Information Theory, 1962(8) :179-187.

二级参考文献60

共引文献188

同被引文献66

引证文献9

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部