期刊文献+

压缩感知中基于坐标下降的稀疏信号恢复

The sparse signal recovery based on coordinate descent optimization for compressed sensing
下载PDF
导出
摘要 目前利用压缩感知理论来解决稀疏信号的恢复,已经成为了研究的热点之一。为了提高一类坐标下降法在压缩感知中的运行速度和减少其迭代次数,提出了一种新的扫描模式来选择更新的坐标。该扫描模式能够一次选择多个坐标,从而提高算法的效率。试验结果给出了在几种不同的矩阵下,新方法运行时间比之前的单个选择坐标更新的方法要短,并且减少了迭代次数。 The research of using compressed sensing theory to recover sparse signals has been very popular. To improve the speed of a coordinate descent method, which has been applied to com- pressed sensing, a new sweep pattern is proposed. The new sweep pattern can choose multiple coordinates so that the performance of the algorithm is improved. The numerical experiments show that the new algorithm brings shorter runtime and reduces iterations than the prior methods selecting single coordinates under various matrices.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2015年第2期451-457,共7页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(11361018) 广西自然科学基金资助项目(2012GXNSFFA060003 2014GXNSFFA118001) 桂林市科技攻关项目(20140127-2)
关键词 稀疏信号恢复 坐标下降 贪婪算法 扫描模式 压缩感知 sparse signal reconstruction coordinate descent greedy algorithm sweep pattern compressed sensing
  • 相关文献

参考文献15

  • 1WU T, LANGE K. Coordinate descent algorithm for lasso penalized regression [ J]. The Annals of Applied Statistics, 2008, 2 ( 1 ) : 224-244.
  • 2LI Y, OSHER S. Coordinate descent optimization for 11 minimization with application to compressed sensing; a greedy algo- rithm [J]. Inverse Problem Imaging, 2009, 3(3):487-503.
  • 3CANDES E, ROMBERG J. Quantitative robust uncertainty principles and optimally sparse decomposition [ J ]. Computing Mathematics, 2006, 6 ( 2 ) : 227-254.
  • 4CANDES E, ROMBERG J. Sparsity and incoherence in compressive sampling [ J ]. Inverse Problems, 2007, 23 ( 3 ) : 969-985.
  • 5TROPP J. Just relax: Convex programming methods for identifying sparse signals in noise [ J ]. IEEE Trans Inform Theory, 2006, 52(3) :1030-1051.
  • 6CANDES E, ROMBERG J, TAO J. Robust uncertainty principles: exact signal reconstruction from highly incomplete fre- quency information [ J ]. IEEE Transactions on Information Theory, 2006, 52 (2) : 5406-5425.
  • 7CANDES E,TAO T. Near-optimal signal recovery from random projections: Universal encoding strategies[ J]. IEEE Trans Inform Theory, 2006, 52(12) : 5406-5425.
  • 8DONOHO D,TANNER J. Neighborliness of randomly projected simplices in high dimensions[ J]. National Academy Sci- ences, 2005, 102(27) : 9452-9457.
  • 9ELAD M, BRUCKSTEIN A. A generalized uncertainty principle and sparse representation in pairs of bases [ J ]. IEEE Transactions Information Theory, 2002, 48 (9) :2558-2567.
  • 10FEUER A, NEMIROVSKI A. On sparse representation in pairs of bases [ J ]. IEEE Trans. Information Theory, 2003, 49(6) : 1579-1581.

二级参考文献13

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部