期刊文献+

基于分块加权的局部保持投影的人脸识别

Locality Preserving Projection for Face Recognition Based on Weighted Sub-patterns
下载PDF
导出
摘要 为增强对姿势、表情、光照等变化的鲁棒性,提出了一种加权的分块局部保持投影人脸识别算法.算法先对样本图像分块,对分块得到的子图像利用局部保持投影算法分别提取局部特征信息,并利用k近邻点的类标信息和样本影响力函数计算各分块子图像的权重.该算法能够有效地抽取图像的局部特征,对人脸表情和光照条件变化较大的图像表现尤为突出,在AT&T和Yale人脸库上的比较实验说明了该算法的有效性. To enhance the robustness of facial pose, expression and illumination variation, a weighted sub-pattern locality preserving projection algorithm is proposed for face recognition. First, the original whole face images are divided into non-overlapped modular images, which are also called sub-patterns. Then, the locality preserving projection algorithm is directly used to the sub-images obtained from the previous step. And the contribution of each sub-pattern can be computed through the label information of k-neighbor and sample influence function. In face recognition, it is really true of the images that have large variations in facial expression and lighting, by this way, the local feature of the images can be extracted efficiently. To test weighed modular LPP and to evaluate its performance, a series of experiments are performed on two human image databases: Yale and AT&T human databases. The experimental results indicate the effectiveness of weighed modular LPP.
出处 《湖南理工学院学报(自然科学版)》 CAS 2015年第1期16-21,共6页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
关键词 人脸识别 局部保持投影 模式识别 特征提取 类标信息 face recognition locality preserving projection pattern recognition feature extraction label information
  • 相关文献

参考文献15

  • 1Zhang Daoqiang,Zhou Zhi-Hua,Chen Songcan.Diagonal principal component analysis for face recognition[J].Pattern Recognition,2006,39(1):140-142.
  • 2Kong Hui,Wang Lei,Teoh Eam Khwang,et al.Generalized 2D principal component analysis for face image representation and recognition[J].Neural Networks,2005,18(5):585-594.
  • 3Li Ming,Yuan Baozong.2D-LDA:A statistical linear discriminant analysis for image matrix[J].Pattern Recognition Letters,2005,26(5):527-532.
  • 4Xiong Huilin,Swamy M.N.S.,Ahmad M.O..Two-dimensional FLD for face recognition[J].Pattern Recognition,2005,38(7):1121-1124.
  • 5He Xiaofei,Yang Shuicheng,Hu Yuxiao,et al.Face recognition using laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2005,27(3):331-332.
  • 6Yu Weiwei,Teng Xiaolong,Liu Chongqing.Face Recognition Using Discriminant Locality Preserving Projections[J].Image and Vision Computing,2006,24(3):239-248.
  • 7Yu Xuelian,Wang Xuegang.Uncorrelated Discriminant Locality Preserving Projections[J].IEEE Signal Process.Lett.,2008.15(5):361-364.
  • 8Hu Haifeng.Orthogonal neighborhood preserving discriminant analysis for face recognition[J].Pattern Recogn,2008,41(6):2045-2054.
  • 9Chen Songcan,Zhu Yulian.Subpattern-based principle component analysis[J].Pattern Recognition 2004,37(5):1081-1083.
  • 10Tan Keren,Chen Songcan.Adaptively weighted sub-pattern PCA for face recognition[J],Neurocomputing,2005,64(3):505-511.

二级参考文献20

  • 1Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 2Moghaddam B, Wahid W, Pentland A. Beyond eigenfaces: Probabilistic matching for face recognition. In Proc. the IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 1998, pp.30-35.
  • 3Moghaddam B, Pentland A. Probabilistic visual learning for object representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 696-710.
  • 4Jolliffe I T. Principal-component Anklysis. New York:Springer-Verlag, 1986.
  • 5Moghaddam B. Jebara T, Pentland A. Bayesian face recognition. Pattern Recognition, 2000, 33(11): 1771-1782.
  • 6Pentland A, Moghaddam B, Starner T. View-based and modular eigenspaces for face recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Seattle,WA, 1994, pp.84-91.
  • 7Brunelli R,Poggio T. Face recognition: Feature versus templates. IEEE Trans. Pattern Analysis and Machine Intelligence, 1993, 15(10): 1042-1052.
  • 8Zhou Z H, Wu J, Tang W. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 2002, 137(1-2): 239-263.
  • 9Penev P S, Atick J J. Local feature analysis: A general statistical theory for object representation. Network: Computation in Neural Systems, 1996, 7: 477-500.
  • 10Yang P, Shan St Gao W, Li S Z, Zhang D. Face recognition using AdaBoosted Gabor features. In Proc. the 6th International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, 2004, pp.356-361.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部