期刊文献+

效率达19.1%的全离子注入单晶硅太阳电池 被引量:2

ALL-ION-IMPLANTED SINGLE CRYSTALLINE SILICON SOLAR CELLS UP TO EFFICIENCY OF 19.1%
下载PDF
导出
摘要 基于PESC(钝化发射极太阳电池)的电池结构,制备发射极为磷离子注入、背面场为硼离子注入的全离子注入单晶硅太阳电池,分析磷和硼离子注入的退火特性和杂质分布以及离子注入硼背场对电池性能的影响,并与常规POCl3扩散发射极电池进行对比。研究表明:离子注入的硼背场可明显提高电池的长波响应,使电池的开路电压提高约100 m V,效率提高5.4%;与POCl3扩散发射极电池相比,磷离子注入发射极改善了电池的短波响应,使电池效率提高0.8%;全离子注入电池的效率达到19.1%。 The all-ion-implanted single crystalline silicon solar cell with the phosphorous-implanted emitter and boron- implanted back surface field (BSF)was prepared based on the PESC structure. The annealing properties and the doping profiles for the implanted phosphorous and boron, and the effect of boron-implanted BSF on the solar cell performance were analyzed. Additionally, the solar cell was compared with solar cell with conventional POC13 diffused emitter. The results show that the boron-implanted BSF improves long-wavelength response, and makes the open circuit voltage increase by 100 mV and the efficiency increase by 5.4%. The phosphorous-implanted emitter improves the short- wavelength response and makes the efficiency increase by 0.8% absolutely. The efficiency of all-ion-implanted solar cells reaches up to 19.1%.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2015年第4期829-834,共6页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(60976046 60837001 61021003) 国家重大科学研究计划(2012CB934204)
关键词 太阳电池 离子注入 扩散 发射极 背面场 退火 solar cell ion implantation diffusion emitter back surface field annealing
  • 相关文献

参考文献13

  • 1马丁·格林.太阳能电池工作原理、工艺和系统的应用[M].北京:电子工业出版社,1987,145-147.
  • 2Zhao Jianhua, Wang Aihua, Green M A. Emitter design for high-efficiency silicon solar cells. Part I : Terrestrial cells[J]. Progress in Photovoltaics: Research and Applications, 1993, 1(3): 193-202.
  • 3Janssens T, Posthuma N E, Kerschaver E V. Advanced phosphorous emitters for high efficiency Si solar cells [A]. 34th IEEE Photovohaic Specialists Conference [C]. Philadelphia, 2009, 000878~0882.
  • 4Douglas E C, D' Aiello R V. A study of the factors which control the efficiency of ion-implanted silicon solar cells[J]. IEEE Transactions on Electron Devices, 1980, 27(4): 792-802.
  • 5Spitzer M B, Tobin S P, Keavney C J. High-efficiency ion-implanted silicon solar cells [J]. IEEE Transactions on Electron Devices, 1984, 31(5) : 546-550.
  • 6Minnucci J A, Matthei K W. Tailored emitter, low- resistivity, ion-implanted silicon solar cells [J]. IEEE Transactions on Electron Devices, 1980, 27(4) : 802- 806.
  • 7Rohatgi A, Meier D L, McPherson B, et al. High- throughput ion-implantation for low-cost high-efficiency silicon solarcells [J ]. Energy Procedia, 2012, 15 : 10- 19.
  • 8Hieslmair H, Mandrell L, Latchford I, et al. High through ion-implantation for silicon solar cells [J]. Energy Procedia, 2012, 27: 122-128.
  • 9Dube C E, Tsefrekas B, Buzby D, et al. High efficiency selective emitter cells using patterned ion implantation [J]. Energy Procedia, 2011, 8 : 706-711.
  • 10Uda K, Kamoshida M. Annealing characteristics of highly P*- ion- implanted silicon crystal-two step anneal [J]. Journal of Applied Physics, 1977, 48(1) : 18-21.

二级参考文献17

  • 1Green M A, Choag C M, Zhang F, Sproul A, Zolper J, Wenham S R 1988 Conference Record of the 20th IEEE Photovoltaics Specialists Conference p. 411.
  • 2Schuhz O, Glunz S W, Goldschmidt J C, Lautenschlager H, Leimenstoll A, Schneiderlochner E, Willeke G P 2004 Prog. Photovolt: Res. Appl. 12 553.
  • 3Hu S M 1991 J. Appl. Phys. 70 R53.
  • 4Fahey P M, Mader S R, Stiffler S R, Mohler R L, Mils J D, Slinkman J A 1992 IBM J. Develop 36 158.
  • 5Cousins P J, Cotter J E 2006 Solar Energy Materials & Solar Cells 90 225.
  • 6Breitenstein O, Bauer J, Trupke T, Bardos R A 2008Prog. Photovolt: Res. Appl. 16 325.
  • 7Jiun H G, Peter J C, Jeffrey E C 2006 Prog. Photovolt: Res. Appl. 14 95.
  • 8Vishnu G, Sudha G 2004 IEEE Transactions on Electron Devices 51 1078.
  • 9Lal R, Sharan R I986 Solid-State Electronics 29 1015.
  • 108).周春兰、曹晓宁、王文静、赵雷、李海玲、刁宏伟[J].物理学报,2010,:59-59.

共引文献6

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部