期刊文献+

基于稀疏性非负矩阵分解的故障监测方法 被引量:12

Fault detection method based on sparse non-negative matrix factorization
下载PDF
导出
摘要 提出了基于稀疏性非负矩阵分解(SNMF)的故障监测方法。非负矩阵分解(NMF)是一种新的降维方法,可以得到原始数据的低秩近似矩阵。与传统的多元统计过程监控方法如主成分分析(PCA)相比,NMF对潜变量的性质没有假设,除了非负性的要求。将稀疏编码和非负矩阵分解方法结合在一起,因为施加了稀疏性的约束,稀疏性非负矩阵分解方法可以得到对数据更稀疏的表示。在分解时对低秩近似矩阵进行正交化处理,从而在降维时除去变量中的冗余信息,将信息集中到更少的投影方向上。然后,用SNMF方法来提取过程的潜变量,并定义新的监测指标来进行故障监测。使用核密度估计(KDE)方法来计算新定义的监测指标的控制上限。最后,将提出的基于SNMF的监测方法应用于TE过程来评估其监测性能,并与基于传统NMF和PCA的方法进行比较。仿真实验结果表明了所提出新方法的可行性。 In this paper, a novel fault detection method based on sparse non-negative matrix factorization (SNMF) is proposed. NMF (non-negative matrix factorization) is a new dimension reduction technique that can find a low-rank matrix approximation from the original data. In contrast to the conventional multivariate statistical process monitoring methods, for example PCA, NMF has no assumption about the nature of latent variables, except for non-negativity. Combining linear sparse coding and NMF, SNMF can learn much sparser representation via imposing sparseness constraints. During factorization, low-rank matrix is orthogonalized to remove redundant information and concentrate information on fewer directions of projection. Then, SNMF is used to extract the latent variables that drive a process and new statistical metrics are defined for fault detection. Kernel density estimation (KDE) is adopted to calculate the confidence limits of defined statistical metrics. Afterwards, the proposed method is applied to the Tennessee Eastman process to evaluate the monitoring performance, comparing with conventional NMF and PCA. The results from the experiment show the feasibility of the new method.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第5期1798-1805,共8页 CIESC Journal
基金 国家自然科学基金项目(61374140) 国家自然科学基金青年基金项目(61403072)~~
关键词 故障监测 非负矩阵分解 主元分析 稀疏编码 统计过程监控 fault detection non-negative matrix factorization PCA sparse coding statistical process monitoring
  • 相关文献

参考文献20

  • 1夏陆岳,潘海天,周猛飞,蔡亦军,孙小方.基于改进多尺度主元分析的丙烯聚合过程监测与故障诊断[J].化工学报,2011,62(8):2312-2317. 被引量:12
  • 2Li Xiangbao, Yang Yupu, Zhang Weidong. Statistical process monitoring via generalized non-negative matrix projection [J]. Chemometrics and lntelligent Laboratory Systems, 2013, 121:15-25.
  • 3Ge Zhiqiang, Song Zhihuan. Distributed PCA model for plant-wide process monitoring [J]. Industrial & Engineering Chemistry Research, 2013, 52:1947-1957.
  • 4Ge Zhiqiang, Song Zhihuan. Mixture Bayesian regularization method of PPCA for multimode process monitoring [J]. AIChE Journal, 2010, 56:2838-2849.
  • 5Jia Mingxing, Xu Hengyuan, Liu Xiaofei, Wang Ning. The optimization of the kind and parameters of kernel function in KPCA for process monitoring [J]. Computers and Chemical Engineering, 2012, 46:94-104.
  • 6葛志强,宋执环.一种新的多工况过程在线监测方法[J].化工学报,2008,59(1):135-141. 被引量:7
  • 7Lee D D, Seung H S. Learning the parts of objects by normegative matrix factorization [J]. Nature, 1999, 401:788-791.
  • 8Shang Fanhua, Jiao L C, Wang Fei. Graph dual regularization non-negative matrix factorization for co-clustering [J]. Pattern Recognition, 2012, 45:2237-2250.
  • 9Zeng Kun, Yu Jun, Li Cuihua, You Jane, Jin Taisong. Image clustering by hyper-graph regularized non-negative matrix factorization [J]. Neuroeomputing, 2014, 138:209-217.
  • 10Lee D D, Seung H S. Algorithms for non-negative matrix factorization //Advance of Neural Information Process System[C]. MIT Press, Cambridge, MA, USA, 2001.

二级参考文献14

  • 1郭明,王树青.基于独立分量分析的系统性能监控方法研究[J].浙江大学学报(工学版),2004,38(6):665-669. 被引量:12
  • 2郭金玉,曾静.基于多尺度主元分析方法的统计过程监视[J].沈阳化工学院学报,2006,20(1):48-51. 被引量:3
  • 3Chiang L H, Russell E L, Braatz R D. Fault detection and diagnosis in industrial systems. London: Springer- Verlag, 2001.
  • 4Hyvarinen A, Oja E, Independent component analysis: algorithms and applications. Neural Network, 2000, 13: 411-430.
  • 5Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChE Journal, 2003, 49 (4):969-976.
  • 6Choi S W, Martin E B, Morris A J, Lee I B. Adaptive multivariate statistical process control for monitoring timevarying processes. Ind. Eng. Chem. Res. , 2006, 45: 3108-3118.
  • 7Li W, Yue H H, Valie-Cervantes, Qin S J. Recursive PCA for adaptive process monitoring. J. Process Control, 2000 (10): 471-486.
  • 8Kano M, Hasebe S, Hashimoto I, Ohno H. Evolution of multivariate statistical process control: application of independent component analysis and external analysis. Comput. Chem. Eng., 2004, 28:1157-1166.
  • 9Hyvarinen A. A fast fixed point algorithm for independent component analysis. Neural Computation, 1997 ( 9 ): 1483-1492.
  • 10Chen Q, Wynne R J, Goulding P, Sandoz D. The application of principal component analysis and kernel density estimation to enhance process monitoring. Control Engineering Practice, 2000 (8):531-543.

共引文献17

同被引文献61

引证文献12

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部