期刊文献+

Highly efficient blue organic light-emitting diodes using various hole and electron confinement layers

Highly efficient blue organic light-emitting diodes using various hole and electron confinement layers
原文传递
导出
摘要 In this Letter, blue phosphorescence organic light-emitting diodes (PHOLEDs) employ structures for electron and/or hole confinement; 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene is used as a hole confinement layer and tris-(phenylpyrazole)iridium [Ir(ppz)3] is utilized for an electron confinement layer (ECL). The electrical and optical properties of the fabricated blue PHOLEDs with various carrier-confinement structures are analyzed. Structures with a large ehergy offset between the carrier confinement and emitting layers enhance the charge-carrier balance in the emitting region, resulting from the effective carrier confinement. The maximum external quantum efficiency of the blue PHOLEDs with the double-ECLs is 24.02% at 1500 cd/m^2 and its luminous efficiency is 43.76 cd/A, which is 70.47% improved compared to the device without a carrier-confinement layer. In this Letter, blue phosphorescence organic light-emitting diodes (PHOLEDs) employ structures for electron and/or hole confinement; 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene is used as a hole confinement layer and tris-(phenylpyrazole)iridium [Ir(ppz)3] is utilized for an electron confinement layer (ECL). The electrical and optical properties of the fabricated blue PHOLEDs with various carrier-confinement structures are analyzed. Structures with a large ehergy offset between the carrier confinement and emitting layers enhance the charge-carrier balance in the emitting region, resulting from the effective carrier confinement. The maximum external quantum efficiency of the blue PHOLEDs with the double-ECLs is 24.02% at 1500 cd/m^2 and its luminous efficiency is 43.76 cd/A, which is 70.47% improved compared to the device without a carrier-confinement layer.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第3期72-75,共4页 中国光学快报(英文版)
  • 相关文献

参考文献33

  • 1C. W. Tang and S. A. VanSlyke, J. Appl. Phys. 51, 21 (1987).
  • 2A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, Appl. Phys. Lett. 80, 3470 (2002).
  • 3S. R. Forrest, Nature 428, 911 (2004).
  • 4B. W. D'Andrade and S. R. Forrest, Adv. Mater. 16, 1585 (2004).
  • 5H. Kanno, N. C. Giebink, Y. Sun, and S. R. Forrest, Appl. Phys. Lett. 89, 023503 (2006).
  • 6B. C. Krummacher, V. E. Choong, M. K. Mathai, S. A. Choulis, F. So, F. Jermann, T. Fiedler, and M. Zachau, Appl. Phys. Lett. 88, 113506 (2006).
  • 7Y. Seino, H. Sasabe, Y. J. Pu, and J. Kido, Adv. Mater. 26, 1612 (2014).
  • 8K. Goushi, R. Kwong, J. J. Brown, H. Sasahe, and C. Adachi, J. Appl. Phys. 95, 7798 (2004).
  • 9S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, Appl. Phys. Lett. 83, 569 (2003).
  • 10J. A. Yoon, Y. H. Kim, N. H. Kim, C. G. Jhun, S. E. Lee, Y. K. Kim, F. R. Zhu, and W. Y. Kim, Chin. Opt. Lett. 12, 012302 (2014).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部