期刊文献+

基于石墨烯的镉离子电化学传感器 被引量:3

An Electrochemical Sensor for the Determination of Cd2+Based on Graphene
下载PDF
导出
摘要 采用电化学法还原氧化石墨烯,构建石墨烯修饰玻碳电极(GCE),选用方波伏安法(SWV)测定微量镉.实验研究了石墨烯修饰电极对镉的溶出伏安行为,优化了石墨烯用量、富集电位、富集时间、pH值、支持电解质.结果表明石墨烯修饰电极明显增强了镉溶出信号,响应电流值与Cd^2+的浓度呈良好的线性关系,线性范围为0.001-1μg/mL,线性方程y=27.859 2x+0.344 5(R=0.998),检出限为0.001μg/mL,所制备的修饰电极重现性和重复性较好,6次测定的相对标准偏差(RSD)分别为2.56%和2.51%.所提出的检测方法简单、灵敏、快速,无需复杂的样品前处理,修饰电极可重复使用,能应用于实际水样中镉的快速测定. An electrochemical sensor of Cd^2+was constructed by electrochemical reduction of graphene oxide on the glassy carbon electrode(GCE).The determination of Cd^2+was proceeded by square wave voltammetry(SWV).Stripping voltammetric behavior of Cd at graphene modified electrode was studied.The amount of graphene,deposition potential,deposition time,pH and the supporting electrolyte were optimized.In comparison with the bare glassy carbon electrode,the response signal of the graphene modified GCE was obviously increased.Under the optimal conditions,the linear calibration curve ranges from 0.001 to 1μg/mL.The linear equation was y=27.859 2x+0.344 5(R=0.998).The detection limit was 0.001μg/mL.The reproducibility and repeatability were also investigated with RSD of 2.56%(n=6)and 2.51%(n=6),respectively.Owing to its simple fabrication,high sensitivity,fast response,good stability and repeatability,the developed sensor can serve as promising electrochemical platform for the detection of Cd^2+in real samples.
出处 《湘潭大学自然科学学报》 CAS 北大核心 2015年第1期47-51,共5页 Natural Science Journal of Xiangtan University
基金 湘潭大学博士科研启动项目(11QDZ04) 湖南省自然科学联合基金项目(13JJ9004) 化学生物传感与计量学国家重点实验室开放课题(2012019)
关键词 石墨烯 镉离子 电化学还原 方波伏安法 graphene Cd2+ electrochemical reduction square wave voltammetry
  • 相关文献

参考文献21

  • 1刘杰堪.镉的毒性和毒理学研究进展[J].中华劳动卫生职业病杂志,1998,16(1):2-4. 被引量:136
  • 2李军,汪模辉,陈文.镉、铅、铬、铜的电化学分析[J].广东微量元素科学,2006,13(7):21-25. 被引量:6
  • 3NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696) : 666-669.
  • 4ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2010, 110 (1) : 132- 145.
  • 5KWON S Y, CIOBANU C V, PETROVA V, et al. Growth of semieonducting graphene on palladium[J]. Nano Letters, 2009, 9 (12): 3 985-3 990.
  • 6PARK S J, RUOFF R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4) : 217-224.
  • 7GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3) : 183-191.
  • 8STOLLER M D, PARK S J, RUOFF R S, et al. Graphene-based ultracapaeitors[J]. Nano Letters, 2008, 8(10) :3 498-3 502.
  • 9BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3) : 902-907.
  • 10BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9): 351-355.

二级参考文献25

共引文献140

同被引文献36

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部