期刊文献+

压水堆核电站一次侧水化学与设备材料腐蚀损伤的关系 被引量:2

Relationship between PWR primary water chemistry and material degradation
下载PDF
导出
摘要 压水堆(pressurized water reactor,PWR)核电站一次侧运行水化学的优化控制是减少辐射剂量,防止关键设备腐蚀损伤,保持燃料性能的最经济、最有效的途径之一,其本质是通过水化学与设备材料的交互作用改善材料表面氧化膜的特性.综述了PWR核电站一次侧主冷却剂水化学与设备材料腐蚀损伤关系的研究现状及问题,介绍了近年来在PWR一次侧注Zn水化学(Zn-injected water chemistry,ZWC)方面的应用基础研究进展. Optimization of primary water chemistry is one of the most effective ways to minimize radiation field, mitigate material degradation and maintain fuel performance in pressurized water reactor (PWR) nuclear power plants. It improves characteristics of oxide scales formed on the materials of equipment due to interactions between water chemistry and materials. This article reviews the current status and related problems of the relationship between water chemistry of primary coolant and material degradation in PWR nuclear power plants. ~ndamental research progress achieved in recent years on Zn-injected water chemistry (ZWC) into primary coolants of PWR is introduced.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期141-151,共11页 Journal of Shanghai University:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)资助项目(2011CB610505) 国家自然科学基金资助项目(51371174) 国家科技重大专项资助项目(2011ZX06004-017) 中国科学院金属研究所创新基金资助项目(Y3F2A111A1)
关键词 压水堆核电站 高温高压水 水化学 注Zn pressurized water reactor (PWR) nuclear power plants high temperature and high pressure water water chemistry Zn injection
  • 相关文献

参考文献28

  • 1Schulz T L. Westinghouse AP1000 advanced passive plant [J]. Nuclear Engineering and Design, 2006, 236: 1547-1557.
  • 2Fruzzetti K, Perkins D. PWR chemistry: EPRI perspective on technical issues and industry research [C]// International Conference on Water Chemistry of Nuclear Reactor Systems. 2008: L01-L02.
  • 3Odar S. Fundamental aspects of water chemistry in the primary system of PWRs [C]// International Seminar on Material and Water Chemistry in Nuclear Power Plants. 2007: 5.
  • 4Westinghouse Electric Corporation. AP1000 design reactor coolant system materials: reactor coolant system and connected systems [M]. Pennsylvania: Westinghouse Electric Corporation, 2005: 5.2-5.35.
  • 5Fruzzetti K, Wood C J. Developments in nuclear power plant water chemistry [C]// International Conference on Water Chemistry of Nuclear Reactor Systems. 2006: 1-6.
  • 6Wiedenmann D, Nordmann F. The benefits of enriched boric acid in PWRs [C]// International Conference on Water Chemistry of Nuclear Reactor Systems. 2012: 30-38.
  • 7Nordmann F. Worldwide chemistry objectives and solutions for NPP [C]// International Conference on Water Chemistry of Nuclear Reactor Systems. 2008: 38-44.
  • 8Taunier S, Wintergerst M, Bouvier O, et al. Corrosion products behavior and source term reduction: guidelines and feedback for EDF PWRs, concerning the B/Li coordinations and steam generators replacement [C]// International Conference on Water Chemistry of Nuclear Reactor Systems. 2010: 207-242.
  • 9Jacko R, Gold R. Crack initiation in alloy 600 SG tubing in elevated pH PWR primary water [C]// Proceedings of 12th International Conference on Materials Degradation in Nuclear Systems. 2005: 925-936.
  • 10Andresen P L, Wilson J A, Ahluwalia K S. Use of primary water chemistry in pressurized water reactors to mitigate PWSCC in Ni-base alloys [C]// International Conference on Water Chemistry of Nuclear Reactor Systems. 2006: 8.

二级参考文献49

  • 1Matsuura M, Aoki H, Tsukamoto H, et al. Application of zinc injection to reduce radiation sources at takahama unit 4 [A]. Int. Congress on Advances in Nuclear Power Plants[C]. Shinjuku Tokyo: Curran Associates Inc, 2009: 309.
  • 2熊书华,朱志平,荆玲玲等.压水堆核电站一回路加锌原理及其工艺[A].电厂化学2009学术年会暨中国电厂化网2009高峰论坛会议论文集[C].武汉,2009:81.
  • 3Cubicciotti D. Potential-pH diagrams for alloy-water sys- tems under LWR conditions [J]. J. Nucl. Mater., 1993, 201: 176.
  • 4Beverskog B, Puigdomenech I. Revised pourbaix diagrams for zinc at 25 ℃ -300 ℃ [J]. Corros. Sci., 1997, 39(1): 107.
  • 5Benezeth P, Palmer D A, Wesolowski D J, et al. New mea- surements of the solubility of zinc oxide from 150 to 350 [J]. J. Solut. Chem., 2002, 31(12): 947.
  • 6Riess R, Ford F P, Lundgren K. LCC-2 annual report [R]. ANTI 06AR,Skultuna: ANTI, 2006.
  • 7Beverskog B. The role of zinc in LWRs [A]. Int. Conf. on Water Chemistry of Nuclear Reactor Systems[C]. San Francisco: IFE, 2004: 26.
  • 8Marble W J. New developments in BWR radiation buildup [A]. EPRI Seminar on BWR Radiation Buildup[C]. Palo Alto: EPRI, 1983: 1.
  • 9Niedrach L W, Stoddard W H. Effect of zinc on corro- sion films that form on stainless-steel [J]. Corrosion, 1986, 42(9): 546.
  • 10Lister D H. Corrosion release-the primary process in ac= tivity transport [A]. Proceedings JAIF Int. Conf. on Wa- ter Chemistry in Nuclear Power Plants[C]. Tokyo: JAIF, 1988: 341.

共引文献11

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部