期刊文献+

文氏管喉部直径对燃烧室流场结构影响的数值模拟 被引量:4

Numerical Simulation of Effects of Venturi Tube Throat Diameter on Flow Field of Combustor
下载PDF
导出
摘要 为了研究文氏管几何结构对燃烧室流场特性的影响,对双级轴向旋流杯燃烧室流场进行了数值模拟.结果表明,文氏管喉部直径的变化使火焰筒回流区变化为3种典型形状,即"鼓状"、"鸭梨状"和"橄榄球状".其中"鸭梨状"回流区内排列有3个不同大小的涡,分别相当于主涡和次涡,通过改变火焰筒直径可以对主涡和次涡进行控制,可以产生符合设计要求的3涡结构;文氏管喉部直径变化会引起火焰筒内角涡的轴向移动,这种移动受回流区涡旋的影响,与火焰筒直径无关;随文氏管喉部直径的增大,回流区平均长度呈先增大后减小的趋势,而回流区宽度却逐渐减小. To investigate the effects of venturi geometrical structure on flow field characteristics,numerical simulations were carried out in a combustor with a dual-stage axial swirl cup. The results show that the recirculation zone of combustor liner changes into three typical shapes,i.e."ellipsoid drum-shaped","pear-shaped"and"rugbyshaped",because of different throat diameter parameters of venturi tube. The"pear-shaped"recirculation zone consists of three different vortexes,which are equivalent to the main vortex and secondary vortex. By changing the diameter of the liner,the main vortex and secondary vertex can be controlled,so the triple vortex structure can be produced which meets the design requirements of the combustor. Different throat diameter parameters may cause the axial movement of corner vortexes in the combustor liner,which is affected by the vortexes in the central recirculation zone but has nothing to do with the diameter of the liner. With the increase of the throat diameter of venturi tube,the mean length of recirculation zone increases firstly and then decreases,while the width of recirculation zone decreases gradually.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2015年第2期97-102,共6页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(11372276 11432013)
关键词 旋流杯 文氏管 回流区 涡旋 swirl cup venturi tube recirculation zone vortex
  • 相关文献

参考文献10

  • 1Im K S, Kim H, Lai M C, et al. Parametric studies of swirler/venturi spray injectors [J]. Journal of Propulsion andPower, 2001, 17(3): 717-727.
  • 2Subramaniyam S, Mulemane A, Im K S, et al. Spray and fuel-air mixing of the swirler/veneri mixers for LPP combustor and fuel reformer applications [C]//The 42 nd Aerospace Sciences Meeting and Exhibit. Nevada, USA, 2004, 2004-0134.
  • 3Peterson A, Subramaniyam S, Lai M C, et al. Optimi-zation of swirler-venturi mixer geometry for fuel re- former application[C] // The 3 th International Energy Conversion Engineering Conference. San Francisco,CA, 2005- 1-12.
  • 4Thundil Karuppa Raj R, Ganesan V. Study on the effect of various parameters on flow development behind vane swirlers [J]. International Journal of Thermal Sciences, 2008, 47(9) : 1204-1225.
  • 5Mongia H C, A1-Roub M, Danis A, et al. Swirl cup modeling ( Ⅰ ) [C] // The 37 th Joint Propulsion Confer- ence and Exhibit. Salt Lake City, Utah, 2001, 2001- 3576.
  • 6Hsiao G, Mongia H. Swirl cup modeling (Ⅲ) : Grid independent solution with different turbulence mod- els[C] //The 41 th Aerospace Sciences Meeting and Ex- hibit. Reno, Nevada, 2003, 2003-1349.
  • 7Heath C M. Characterization of swirl-venturi lean direct injection designs for aviation gas-turbine combustion [C] //The 49 th Joint Propulsion Conference. San Jose, CA. 2013. 2013-3647.
  • 8彭云晖,林宇震,许全宏,刘高恩.双旋流空气雾化喷嘴喷雾、流动和燃烧性能[J].航空学报,2008,29(1):1-14. 被引量:58
  • 9林宇震,刘高恩,王华芳.反向与同向双旋流器流场的试验研究[J].航空动力学报,1995,10(4):423-425. 被引量:25
  • 10党新宪,赵坚行,徐榕,颜应文,刘勇.试验研究旋流数对燃烧室气动性能的影响[J].航空动力学报,2011,26(1):21-27. 被引量:17

二级参考文献37

  • 1党新宪,赵坚行,张欣,徐榕,颜应文,刘勇.应用PIV技术测试模型环形燃烧室流场[J].航空动力学报,2009,24(7):1470-1475. 被引量:13
  • 2[2]Fu Y,Cai J,Jeng S M,et al.Confinement effects on the swirling flow of a counter-rotating swirl cup[R].ASME 2005-GT-68622,2005.
  • 3[3]Jeng S M,Flohre N M,Mongia H C.Swirl cup modeling-atomization[R].AIAA 2004-137,2004.
  • 4[4]Mongia H C,Al-Roub M,Danis A,et al.Swirl cup modeling part I[R].AIAA 2001-3576,2001.
  • 5[5]Hsiao G,Mongia H C,Vij A.Swirl cup modeling part II:inlet boundary conditions[R].AIAA 2003-1350,2003.
  • 6[6]Hsiao G,Mongia H C.Swirl cup modeling part III:grid independent solution with different turbulence models[R].AIAA 2003-1349,2003.
  • 7[7]Cai J,Fu Y,Elkadi A,et al.Swirl cup modeling part IV:effect of confinement on flow characteristics[R].AIAA 2003-0486,2003.
  • 8[8]Wang S,Yang V,Mongia H C,et al,Modeling of gas turbine swirl cup dynamics,part V:large eddy simulation of cold flow[R].AIAA 2003-0485,2003.
  • 9[9]Giridharan M G,Mongia H C.Swirl cup modeling part VI:dilution jet modeling[R].AIAA 2003-1203,2003.
  • 10[10]Stevens E J,Held T J,Mongia H C.Swirl cup modeling part VII:partially-premixed laminar flamelet model validation and simulation of a single-cup combustor with gaseous n-heptane[R].AIAA 2003-0488,2003.

共引文献85

同被引文献27

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部