期刊文献+

Microstructure and Mechanical Properties of Mg–7.4% Al Alloy Matrix Composites Reinforced by Nanocrystalline Al–Ca Intermetallic Particles 被引量:3

Microstructure and Mechanical Properties of Mg–7.4% Al Alloy Matrix Composites Reinforced by Nanocrystalline Al–Ca Intermetallic Particles
原文传递
导出
摘要 Mg-7.6% Al (in mass fraction) alloy matrix composites reinforced with different volume fractions of nano- crystalline Al3Cas particles were synthesized by powder metallurgy, and the effect of the volume fraction of reinforcement on the mechanical properties was studied. Room temperature compression test reveals considerable improvement on mechanical properties as compared to unreinforced matrix. The compressive strength increases from 683 MPa for unre- inforced alloy matrix to about 767 and 823 MPa for the samples having 20 and 40 vol% of reinforcement, respectively, while retaining appreciable plastic deformation ranging between 12 and 24%. The specific strength of the composites increased significantly, demonstrating the effectiveness of the low-density AlaCas reinforcement. Mg-7.6% Al (in mass fraction) alloy matrix composites reinforced with different volume fractions of nano- crystalline Al3Cas particles were synthesized by powder metallurgy, and the effect of the volume fraction of reinforcement on the mechanical properties was studied. Room temperature compression test reveals considerable improvement on mechanical properties as compared to unreinforced matrix. The compressive strength increases from 683 MPa for unre- inforced alloy matrix to about 767 and 823 MPa for the samples having 20 and 40 vol% of reinforcement, respectively, while retaining appreciable plastic deformation ranging between 12 and 24%. The specific strength of the composites increased significantly, demonstrating the effectiveness of the low-density AlaCas reinforcement.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第4期444-448,共5页 金属学报(英文版)
基金 DAAD for their financial support
关键词 INTERMETALLICS CONSOLIDATION Dispersion strengthening Powder metallurgy MECHANICALPROPERTY Electron microscopy Intermetallics Consolidation Dispersion strengthening Powder metallurgy Mechanicalproperty Electron microscopy
  • 相关文献

参考文献25

  • 1X.J. Wang, K. Wu, W.X. Huang, H.F. Zhang, M.Y. Zheng, D.L. Peng, Compos. Sci. Technol. 67, 2253 (2007).
  • 2Y.H. Lira, S.C. Lim, M. Gupta, J. Wear 225, 629 (2003).
  • 3Z. Huang, S. Yu, M. Li, Trans. Nonferrous Met. Soc. China 20, 458 (2010).
  • 4A. Munitz, I. Jo, J. Nuechterlein, W. Garrett, J.J. Moore, M.J. Kaufman, Int. J. Mater. Sci. 2, 15 (2012).
  • 5S. Jayalakshmi, S.V. Kailas, S. Seshan, Compos. A 33, 1135 (2002).
  • 6L.Q. Chen, Q. Dong, M.J. Zhao, J. Bi, N. Kanetake, Mater. Sci. Eng. A 408, 125 (2005).
  • 7M.Y. Zheng, K. Wu, S. Kamado, Y. Kojima, Mater. Sci. Eng. A 48, 67 (2003).
  • 8J.M. Lee, S.B. Kang, T. Sato, H. Tezuka, A. Kamio, Mater. Sci. Eng. A 343, 199 (2003).
  • 9M.A. Munoz-Morris, J.I. Rexach, M. Lieblich, IntermetaUics 13, 141 (2005).
  • 10J.M. Torralba, F. Velasco, C.E. Costa, I. Vergara, D. Caceres, Compos. A 33, 427 (2002).

同被引文献4

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部