摘要
传统的基于过程语言的算法实现很难应用于大规模并行计算,OpenMP和MPI等现有并行框架存在着并行实现困难、开发成本大和灵活度差等诸多问题。通过应用基于函数语言的并行新方法,有效简化并行代码的设计,提升并行算法的开发自由度,并可支持动态分区等复杂并行需求。通过将其应用于具有天然并行属性的FDTD剖分及仿真算法,发现可实现高达50%加速比的高效并行,并在26h内成功求解高达6.9亿未知量的电大尺寸航空母舰甲板模型电磁全波仿真问题。
The traditional procedure languages are not natively parallelizable, while the present parallelization frameworks such as OpenMP and MPI are difficult to apply and maintain. In this paper, a new parallel imple- mentation method is proposed using the functional language, which rapidly reduces the developing cost, thus enhancing the freedom of parallel algorithm implementation, and could satisfy advanced parallel require- ments such as dynamic partitioning, etc. For validation, the proposed new algorithm is applied on the FDTD meshing and simulation algorithm successfully, where an acceleration ratio up to 50% is achieved, and an electro-large motherboard problem with over 690 million unknown numbers is successfully solved in 26 hours.
出处
《中国舰船研究》
CSCD
北大核心
2015年第2期35-39,54,共6页
Chinese Journal of Ship Research
基金
国家级重大基础研究项目
关键词
函数语言
并行算法
FDTD
电大问题
functional language
parallel algorithm
finite difference time domain (FDTD)
electro-large problem