期刊文献+

温度对介电弹性体材料力电耦合变形的影响 被引量:3

EFFECT OF TEMPERATURE ON THE ELECTROMECHANICAL DEFORMATION OF DIELECTRIC ELASTOMER
原文传递
导出
摘要 介电弹性体(Dielectric Elastomer,简称DE)材料是一类在电场激励下可以产生大幅度尺寸或形状变化的新型柔性功能材料.DE材料具有非常宽的温度应用范围,这种宽的温度工作范围和快速大变形性能为各种柔性致动器结构提供了良好的基础,但作为一种粘弹性高分子材料,温度对其性能的影响也是非常明显的.然而到目前为止,所有关于DE材料驱动性能的研究仅局限于室温条件下,温度变化对DE材料力电耦合稳定性的影响几乎没有相关报道.基于此,通过实验研究了温度对最常用的DE材料(VHB 4910,3M)力电耦合变形的影响,结果表明:升高温度可以提高DE材料的力电耦合变形;温度越高,DE材料越容易发生力电耦合失稳.然后,从热力学和粘弹性力学出发,建立了考虑温度影响后的DE材料的粘弹性力电耦合模型,数值模拟理论结果和实验结果定性地吻合. Dielectric elastomer (DE) is a typical viscoelastic soft material,which is capable of giant deformation under an electric field and can be applied in broad temperature range. Temperature can significantly affect the performance of DE. However, few reports focus on the effect of temperature on the elec tromechanical deformation. In this study, the in-plane deformation of most widely used DE (VHB 4910, 3M) under different temperatures is performed experimentally. The results show that the deformation of the viscoelastic DE increases with the increasing temperature and DE easily occurs electromechanical instability at a high temperature. Subsequently, based on the thermodynamics, we present a viscoelastic model to describe the electromechanical deformation of DE under different temperatures. The numerical results show that DE creeps with time due to the viscoelasticity and has bigger deformation at higher temperature, which show well consistent with the experimental results.
出处 《固体力学学报》 CAS CSCD 北大核心 2015年第2期129-136,共8页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金(11402246) 总体工程研究所创新与发展基金(14cxj18)资助
关键词 介电弹性体 温度 粘弹性 力电耦合 dielectric elastomer, temperature, viscoelasticity, electromechanical coupling
  • 相关文献

参考文献21

  • 1Madden J D W,Vandesteeg N A,Anquetil P A,Mad den P G A, Takshi A, Pytel R Z, Lafontaine S R, Wieringa P A, Hunter I W. Artificial muscle technolo- gy:physical principles and naval prospects [J]. IEEE Journal of Oceanic Engineering, 2004, 29 (3): 706-728.
  • 2Pelrine R,Kornbluh R,Pei Q,Joseph J. High-speed e- lectrically actuated elastomers with strain greater than 100° [J]. Science,2000,287(5454) :836-839.
  • 3Keplinger C, Sun J, Foo C C, Rothemund P, White sides G M, Suo Z. Stretchable, transparent, ionic con- ductors[J]. Science, 2013,341 ( 6149) : 984-987.
  • 4Keplinger C, Li T, Baumgartner R. Suo Z, Bauer S. Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation [J]. Soft Matter, 2012,8 (2) : 285-288.
  • 5O'Halloran A,O'Malley F,McHugh P. A review on dielectric elastomer actuators, technology, applica tions,and challenges[J]. Journal of Applied Physics, 2008,104(7) :071101.
  • 6Zhao X, Suo Z. Method to analyze electromechanical stability of dielectric elastomers[J] Applied Physics Letters,2007,91(6) :061921.
  • 7Brochu P,Pei Q. Advances in dielectric elastomers for actuators and artificial muscle [J]. Macromolecular Rapid Communications, 2010,31 ( 1 ) : 10-36.
  • 8Plante J S, Dubowsky S. Large-scale failure modes of dielectric elastomer actuators[J]. International Jour-nal of Solids and Structures, 2006,43 (25-26): 7727- 7751.
  • 9Keplinger C, Kaltenbrunner M, Arnold N, Bauer S. Capacitive extensometry for transient strain analysis of dielectric elastomer actuators[J]. Applied Physics Letters,2008,92(19) :192903.
  • 10Lochmatter P, Kovacs G, Wissler M. Characterization of dielectric elastomer actuators based on a visco-hy- perelastic lm model[J]. Smart Materials and Struc tures,2007,16(2) :477-486.

同被引文献15

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部