期刊文献+

波前法在无网格伽辽金法中的应用

THE APPLICATION OF WAVE FRONT METHOD IN THE GALERKIN ELEMENT-FREE METHOD
原文传递
导出
摘要 有别于有限元法,无网格法采用基于点的近似,可彻底或部分地去除网格(只保留积分所需的背景网格),在保证计算精度同时降低计算难度.无网格伽辽金法(Element Free Galerkin Method,EFG)是一种基于移动最小二乘近似(Moving Least-Squares,MLS)的全局弱式无网格法,广泛应用于计算力学等领域,该方法的一个缺点是:计算过程中产生的系数矩阵含有的非零元数量比有限元法多,即使处理中等规模模型时,也要求计算机有很大的存储空间,并且计算时间长.波前法在有限元法中已有很成熟的应用,但至今没有应用于无网格方法.论文介绍了波前法在无网格伽辽金法中的应用方法,编写了相应的计算程序,并以弹性力学为例做了验算. Different from grid-based algorithm,meshless (or meshfree) method is a node-based algorithm that merely needs nodes information. Without the need of connecting nodes into mesh cell, this method is convenient with a good accuracy. The Galerkin element-free method (EFG) is a method based on the global weak form and moving least square (MLS) approximation, which is widely used in computational mechanics. One disadvantage of this method is that, the number of nonzero elements in coefficient matrix produced in EFG is much more than in finite element method, requiring bigger memory space. The wave front method is applied in finite element method for a long time,however,it has not used in meshless method yet. In this article,applying the wave front method to EFG method is discussed, and some numerical experiments are presented to validate the present method.
出处 《固体力学学报》 CAS CSCD 北大核心 2015年第2期171-178,共8页 Chinese Journal of Solid Mechanics
关键词 计算力学 无网格法 波前法 计算效率 存储空间 computational mechanics,meshless,wave front method,computational efficiency,memoryspace
  • 相关文献

参考文献18

  • 1Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1994,37 (2) : 229-256.
  • 2Liu G R, Gu Y T. A point interpolation method for two-dimensional solids [J]. International Journal for Numerical Methods in Engineering, 2001,50 (4) : 937- 951.
  • 3Liu W K,Jun S,Zhang Y F. Reproducing kernel parti- cle methods[J]. International Journal for Numerical Methods in Fluids, 1995,20(8-9) : 1081-1106.
  • 4Powell M J D. The Theory of Radial Basis Function Approximation in 1990 [M]. University of Cam- bridge. Department of Applied Mathematics and The- oretical Physics, 1990.
  • 5Duarte C A,Oden J T. An h-p adaptive method using clouds[J]. Computer Methods in Applied Mechanics and Engineering, 1996,139(1) :237-262.
  • 6Owen S J. An Implementation of Natural Neighbor Interpolation in Three Dimensions [D]. Brigham Young University. Department of Engineering, 1992.
  • 7Chen C S, Cho H A, Golberg M A. Some comments on the ill-conditioning of the method of fundamental solutions[J]. Engineering Analysis with Boundary El- ements,2006,30(5) :405-410.
  • 8Feng G,Li M,Chen C S. On the ill-conditioning of the MFS for irregular boundary data with sufficient regu larity[J]. Engineering Analysis with Boundary Ele ments, 2014,41 : 98-102.
  • 9Chen J T, Chang M H, Chen K H, Lin S R. The boundary collocation method with meshless concept for acoustic eigenanalysis of two-dimensional cavities using radial basis function[J]. Journal of Sound and Vibration, 2002,257 (4) : 667-711.
  • 10Tsai C C. The method of fundamental solutions with dual reciprocity for three-dimensional thermoeIasticity under arbitrary body forces[J]. Engineering Compu- tations,2009,26(3) :229 -244.

二级参考文献38

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部