期刊文献+

一种增量式半监督VPMCD齿轮故障在线诊断方法 被引量:4

A novel incremental semi-supervised VPMCD gear fault on-line diagnosis method
下载PDF
导出
摘要 针对齿轮故障诊断中难以获得大量故障样本的问题及实时在线诊断的需求,提出了一种基于增量式半监督多变量预测模型(Incremental Semi-supervised Variable Predictive Model based Class Discriminate,ISVPMCD)的齿轮故障在线检测方法。首先使用VPMCD方法给少量的已知样本建立初始预测模型,接着利用VPMCD方法中的判据给未标识样本赋予初始伪标识,然后通过互相关准则筛选出伪标识样本,最后利用伪标识样本和已知样本作为训练样本更新初始预测模型,使得更新的预测模型能兼顾整个样本集的信息,从而可以有效地解决小样本的故障诊断问题,另外,由于该方法在实时更新新样本的过程中不需要再次建立判别模型,从而缩短了分类时间,为实时在线诊断提供了新的思路。对UCI标准数据以及齿轮实测数据的分析结果表明,适合于小样本的ISVPMCD模式识别方法可以更快更准确地识别齿轮工作状态和故障类型。 Aiming at the problem that getting a large amount of fault samples is difficult and the demand of real-time online diagnosis for gear fault diagnosis,a novel incremental semi-supervised variable predictive mode-based class discriminate (ISVPMCD)gear fault on-line detection method was put forward here.Firstly,the VPMCD approach was used to establish an initial prediction model for a small number of labeled samples.Secondly,the criterion of VPMCD was used to provide initial pseudo labels for unlabeled samples.Thirdly,the pseudo labeled samples were screened with the cross-correlation rule.Finally,the pseudo labeled samples and labeled samples were taken as the training samples to update the initial prediction model,so that the global information of the whole sample set could be considered,and the problem of fault diagnosis of a small set of samples could be solved effectively.In addition,the method did not need to establish a discriminant model in the process of real-time updating new samples,it shortened the time of classification and offered a new way for real-time online diagnosis.The analysis results of the UCI standard data and the test data of gears showed that the ISVPMCD pattern recognition method being suitable for small samples can be used to identify the gear working state and fault type much more quickly and accurately.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第8期49-54,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(51175158 51075131) 湖南省自然科学基金(11JJ2026) 中央高校基本科研业务费专项基金资助项目
关键词 ISVPMCD 增量式 半监督 齿轮故障诊断 incremental semi-supervised variable predictive mode-based class discriminate (ISVPMCD) incremental semi-supervised gear fault diagnosis
  • 相关文献

参考文献13

  • 1Bai S H. Semi-supervised learning of language model using unsupervised topic model [ C ]. IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings, 2010:5386 - 5389.
  • 2Mehdizadeh M, MacNish C. Semi-supervised neighborhood preserving discriminant embedding: a semi-supervisedsubspace learning algorithm [ J ]. Computer Science, 2011, 6494 : 199 - 212.
  • 3He Xiao-bin, Yang Yu-pu, Yang Ya-hong. Fault diagnosis based on variable-weighted kernel Fisher discriminant analysis [ J ]. Chemometrics and Intelligent Laboratory System, 2008, 93(1) :27 -33.
  • 4Saimurugan M, Ramachandran K I, Sugumaran V, et al. Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine [ J ]. Expert Systems with Applications ,2011,38 (4) :3819 - 3826.
  • 5Xu Zeng-bing, Xuan Jiang-ping, Shi Tie-lin, et al. A novel fault diagnosis method of bearing based on improved fussyARTMAP and modified distance discriminant technique [ J ]. Expert Systems with Applications, 2009,36 ( 9 ) : 11801 - 11807.
  • 6Wang C C, Yuan K, Shen P C, et al. , Applications of fault diagnosis in rotating machinery by using time series analysis with neural network [ J ]. Expert Systems with Applications, 2010, 37(2) : 1696 - 1702.
  • 7Fei Sheng-wei, Zhang Xiao-bin. Fault diagnosis of power transformer based on support vector machine with genetic algorithm [ J]. Expert Systems with Applications, 2009, 36 (8) : 11352 -11357.
  • 8Raghuraj R, Lakshminarayanan S. Variable predictive models-A new multivariate classification approach for pattern recognition applications [ J ]. Pattern Recognition, 2009, 42 (1) :7 -16.
  • 9Peng Z, Chu F, He Y. Vibration signal analysis and feature extraction based on reassigned wavelet scalogram [ J ]. Journal of Sound and Vibration, 2002, 253 (5) : 1087 - 1100.
  • 10程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85

二级参考文献28

  • 1王延春,谢明,丁康.包络分析方法及其在齿轮故障振动诊断中的应用[J].重庆大学学报(自然科学版),1995,18(1):87-91. 被引量:25
  • 2[1]Randall R B. A new method of modeling gear faults. ASME Journal of Mechanical Design, 1982, 104:259~267
  • 3[2]Radcliff G A. Condition monitoring of rolling element bearings using the enveloping technique. Machine Cond- ition Monitoring, Mechanical Engineering Publication Ltd., London:1990:55~67
  • 4[6]Randall R B. Hilbert transform techniques in machine diagnostics. In:IFToMM International Conference on Rotor dynamics, Tokyo, 1986:409~420
  • 5[7]Petros M, James F K, Thomas F Q. On amplitude and frequency demodulation using energy operator. IEEE Transactions on Signal Processing, 1993, 41(4):1 532~1 550
  • 6[8]Alexandros P, Petros M. A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation. Signal Processing, 1994, 37(1):95~120
  • 7[9]Petros M, James F K, Thomas F Q. Energy separation in signal modulations with application to speech analysis. IEEE Transactions on Signal Processing, 1993, 41(10): 3024~3051
  • 8[12]Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A, 1998, 454:903~995ITS APPLICATION IN MECHANICAL FAULT DIAGNOSIS
  • 9Huang N E,Zheng Shen,Long S R,et al.Theempirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time seriesanalysis[A].Proc.Roy.Soc[C].London,1998,454:903-995.
  • 10Huang N E,Wu Z.A review on Hilbert-Huangtransform:method and its applications to geophysicalstudies[J].Adv.Adapt.Data Anal.,2009,1:1-23.

共引文献244

同被引文献23

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部