期刊文献+

基于延时随机子空间方法的非白噪声环境激励结构模态参数识别 被引量:7

Modal parameter identification of structures under non-white noise ambient excitations using delay-index-based stochastic subspace method
下载PDF
导出
摘要 为了消除非白噪声环境激励在结构模态参数识别结果中产生的虚假模态,引入扩展状态模型,从状态空间方程的角度论证了虚假模态产生的原因;然后,针对一类具有典型性和代表性的(自相关函数在纵坐标轴附近一定范围内有非零值的)非白噪声环境激励信号,在传统随机子空间算法的基础上引入延时指标,建立延时随机子空间方法。数值算例表明延时随机子空间方法能够有效地剔除非白噪声环境激励在模态参数识别结果中产生的虚假模态,放宽了传统模态参数识别方法对环境输入的白噪声假设。 In order to eliminate spurious modes caused by non-white noise ambient inputs,an augmented state space model was introduced to explain how the spurious modes arise in the modal parameter identification of structures. For a kind of typical non-white ambient excitations,whose autocorrelation function values are nonzeroes near the vertical axis,the delay-index-based stochastic subspace method was proposed by introducing a delay index in the traditional stochastic subspace method.Numerical examples showed that this improved method can eliminate spurious modes due to non-white noise inputs the white noise assumption of ambient excitations in the traditional modal analysis methods.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第8期71-76,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51078357)
关键词 结构模态参数识别 非白噪声环境激励 随机子空间方法 延时指标 structural modal parameter identification non-white noise ambient excitations stochastic subspace method delay index
  • 相关文献

参考文献22

  • 1Brinker R, Zhang L, Andersen P. Modal identification from ambient responses using frequency domain decomposition [C]// Proceedings of 18th International Modal Analysis Conference (IMAC18). San Antonio, USA: SEM, 2000: 625 - 630.
  • 2Ren W X, Zhao T, Harik I E. Experimental and analytical modal analysis of a steel arch bridge [ J ]. Journal of Structural Engineering, ASCE, 2004,130 (7) : 1022 - 1031.
  • 3李中付,华宏星.一种非稳态环境激励下线性结构的模态参数辨识方法[J].振动与冲击,2008,27(3):8-12. 被引量:12
  • 4Brincker R, Zhang L M, Andersen P. Modal identification of output-only systems using frequency domain decomposition [J ]. Smart Materials and Structures, 2001, 10 ( 3 ) : 441 - 445.
  • 5Lisowski W. Classification of vibration modes in operational modal analysis [ C]/! Proceedings of the International Con- ference on Structural System Identification. Kassel, Germa- ny: 2001:593 -592.
  • 6Jacobsen N J. Identifying harmonic components in operational modal analysis[ C]// Proceedings of 12th International Con- gress on Sound and Vibration. Lisbon, Portugal : 2005 : 1 - 8.
  • 7Yu D J, Ren W X. EMD-based stochastic subspaee identifi- cation of structures from operational vibration measurements [ J ]. Engineering Structures, 2005, 27 ( 12 ) : 1741 - 1751.
  • 8Mohanty P, Rixen D J. Accounting for harmonic excitations in operational modal analysis [ C l//Proceedings of the 21 st In- ternational Modal Analysis Conference (IMAC XXI ). Kissimmee, USA: SEM, 2003.
  • 9Peeters B. System identification and damage detection in civil engineering [ D ]. Belgium : Katholieke Universiteit Leuven, 2000.
  • 10Goursat M, Mevel L. Covariance subspace identification: Numerical analysis of spurious mode stability [ C ]//Proceed- ings of the 26th International Modal Analysis Conference (IMAC-XXVI). Orlando, USA: SEM, 2008:73 - 80.

二级参考文献15

  • 1樊可清,倪一清,高赞明.改进随机子空间系统辨识方法及其在桥梁状态监测中的应用[J].中国公路学报,2004,17(4):70-73. 被引量:17
  • 2李中付 宋汉文 等.基于环境激励的模态参数识别方法综述[J].振动工程学报,2000,13:578-585.
  • 3盛骤 谢式千 潘承毅.概率论与数理统计[M].北京:高等教育出版社,1989..
  • 4Albert Benveniste, et al. Polyreference Version of Subspaee Algorithms for Output only Structural Identification, 18^th IMAC, 2000 : 620-624.
  • 5Huang N E, Shen Z,Long S R, et al, The Ages of Large Amplitude Coastal Seiches on the Cafibben Coast of Puerto Rico [ J ]. Journal of Physical Oceanography, 2000, 30: 2001-2012.
  • 6Huang N E, Shen Z, Long S R. A New View of Nonlinear Water Waves: The Hilbert Spectrum [ J]. Annu. Rev. Fluid Mech. 1999,31:417-457.
  • 7James G H, Came T G, Lauffer J P, et al. The Nature Excitation Technique (NEXT) for Modal Parameter Extraction from Operating Structures [ J ]. Modal Analysis, 1995, 10 (4) : 260-277.
  • 8Jansson M, Wahlberg B, A linear regression approach to state- space subspace system identification [ J ]. Signal Processing, 1996. 52, 103 - 129.
  • 9Reynders E, Pintelon R, De Roeck G. Uncertainty bounds o modal parameters obtained from stochastic subspac, identification[ J]. Mechanical Systems and Signal Processint2008, 22 : 948 - 969.
  • 10Alicioglu B, Lus H, Asce A M, Ambient vibration analysis with subspace methods and automated mode selection: case studies [J]. Journal of Structural Engineering, 2008:1016 - 1029.

共引文献25

同被引文献77

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部