期刊文献+

基于RSSI的矿山井下机车定位算法的改进 被引量:4

Improved Location Algorithm of Underground Mine Locomotive Based on RSSI
下载PDF
导出
摘要 因传统的矿山井下机车定位误差较大,应用不够灵活,提出了一种矿山井下机车改进的接收信号强度指示(Received Signal Strength Indication,RSSI)定位算法。为减小机车移动造成的误差,多次采样RSSI值,对其进行最小二乘法曲线拟合,然后根据拟合后得到的函数,计算出运行算法和网络延迟后的RSSI值。为减少矿下环境影响,优选信标节点;且机车位置计算取其到不同信标节点距离的差值,得到的一组双曲线方程,用chan算法求解。仿真结果表明,改进后的算法具有较高的定位精度,节点布置的越密集,参与定位的节点越多,定位精度就越高,最低定位误差为0.4m。 The traditional underground mine locomotive location gets large errors and is not flexible enough. So im- proved received signal strength indication(RSSI) location algorithm of underground mine locomotive is proposed. In order to reduce the locomotive movement error, the RSSI values are measured multiple and handle with squares curve fit. Then ac- cording to the fitting function, the RSSI value which is the one after the time of running algorithm and network delay is calcu- late& To reduce the environmental influence of mine, the excellent beacon nodes are chose. And the distance difference be- tween locomotive and different beacon node is used to calculate the position of locomotive. Then a set of hyperbolic equations are got and solved with chan algorithm. The results of simulation show that the improved algorithm has good positioning ac- curacy. The more node's dense is arranged and nodes are involved in positioning, the higher positioning accuracy is got. The minimum error is 0. 4 m.
出处 《计算机与数字工程》 2015年第4期554-557,571,共5页 Computer & Digital Engineering
关键词 RSSI定位 最小二乘法拟合 CHAN算法 井下机车 高斯分布 RSSI location, least square fitting, chan algorithm, mine locomotive, gaussian distribution
  • 相关文献

参考文献10

  • 1崔丽珍,李蕾,高丽丽,陈阳阳.改进RSSI的煤矿井下定位技术研究与实现"[J].矿业安全与环保,2013,40(4):35-38. 被引量:10
  • 2邓明,张国枢,陈蕴.一种基于ZigBee协议的矿井人员定位技术研究[J].计算机技术与发展,2009,19(2):243-246. 被引量:6
  • 3李梦和,林川,潘盛辉.基于双目视觉的矿井机车定位方法[J].煤矿机械,2012,33(4):217-219. 被引量:4
  • 4袁小平,陈羲梅,鲍捷,池庆.捷联惯性导航系统在矿井机车定位中应用研究[J].煤矿机械,2013,34(1):208-209. 被引量:7
  • 5WANG Xin-wei, YUAN Shao-ping, LAUR R, et al. Dynamic localization based on spatial reasoning with RSSI in wireless sensor networks for transport logistics [J]. Sensors and Actuators A: Physical,2011,171(2): 421-428.
  • 6WANG Huan-huan, WAN Jian-chen, LIU Ru-you. A novel ranging method based on RSSI[J]. Energy Procedia,2011, 12 : 230-235.
  • 7WU Xue-wen, TANG Dun-ye, QIAN Xin-hong. A centralized location algorithm based on RSSI in large scale wireless sensor network[J]. Procedia Engineering, 2011,15 : 2004-2009.
  • 8ZHENG Jun-gang, WU Cheng-dong, CHU Hao, et al. An improved RSSI measurement in wireless sensor networks[J]. Procedia Engineering, 2011,15:876-880.
  • 9CHAN Y T, HO K C. A simple and efficient estimator for hyperbolic location[J]. IEEE Trans on Signal Processing, 1994,42(8): 1905-1915.
  • 10YU Ken-gen, SHARP I, GUO Y J. Ground-based wireless positioning[M]. Wiley-IEEE Press, 2009.

二级参考文献27

共引文献22

同被引文献31

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部