期刊文献+

有限温度第一原理热力学:关于处理有序相和无序相的观点(英文) 被引量:1

First-Principles Thermodynamics at Finite Temperatures:Perspective on Ordered and Disordered Phases
下载PDF
导出
摘要 第一原理计算一个悬而未决的难题是预测无序相在有限温度下的热力学性能。作者团队指出该难题的最新解决思路是采用可以处理微观组态的配分函数方法,该方法已成为处理只有一种主要微观组态构成的有序相以及有多种明显的微观组态构成的无序相的关键。结合第一原理声子计算和准简谐近似可以有效地预测任意一个给定微观组态的热力学性质。总结了作者团队在第一原理热力学方面的最新研究进展并具体给出了有序相方面的例子:Li2S,hcp Mg和fcc Ni,以及无序相方面的例子:Cu2Zn Sn S4(CZTS)和fcc Ce。同时指出:1从常用的"相"扩展到"微观组态"开辟了一条定量研究材料相变、热膨胀等异常性能的新途径,而这些异常性能的起源可以追溯到"微观组态构型熵";2这些微观组态也可以认为是材料基因组的基本组成模块。 A longstanding issue of first-principles calculations is to predict thermodynamic properties for a disordered phase at finite temperatures. Here, we show that a recent advance for this issue is the partition function approach in terms of microstates, which is the key for both ordered phase with one primary microstate and disordered phase consisting of two and more noticeable microstates. For a given microstate, first-principles phonon calculations in terms of the quasiharmonic approach provide a practical pathway to predict its thermodynamic properties. In the present paper, a summary of proper- ties predicted at finite temperatures is presented, and examples are given for ordered phases of anti-fluorite Li2 S, hcp Mg, and fcc Ni as well as disordered phases of Cu^ZnSnS4 (CZTS) and fcc Ce. It is shown that (i) the extension from "phase" to "microstate" opens an avenue to quantitatively tailor anomalous properties such as phase transition and thermal expansion anomaly, and these anomalies are traceable from the microstate configurational entropy, and (ii) these microstates can be considered as the building blocks, i. e. , the genome, of materials.
出处 《中国材料进展》 CAS CSCD 北大核心 2015年第4期297-304,316,共9页 Materials China
基金 financially supported by the U. S. national science foundation (NSF) with Grant Nos. DMR-1006557,CHE-1230929,DMR-1310289,and CMMI1333999 supported by the Office of Science of the U. S. Department of Energy under contract No. DE-AC02-05CH11231 partially on the resources of XSEDE supported by NSF with Grant No. ACI-1053575
关键词 第一原理声子计算 准简谐近似 微观组态 有序相 无序相 热力学性质 first-principles phonon calculations quasiharmonic approach microstate ordered phase disordered phase thermodynamic properties
  • 相关文献

参考文献60

  • 1Liu Z K. First-Principles Calculations and CALPHAD Modeling of Thermodynamics [J]. J Phase Equilib Diff, 2009, 30 : 517 - 534.
  • 2Shang S L, Wang Y, Kim D, et al. First-Principles Thermody- namics from Phonon and Debye Model: Application to Ni and Ni3Al [J]. Comput Mater Sci, 2010, 47:1 040-1 048.
  • 3Wang Y, Liu Z K, Chen L Q. Thermodynamic Properties of Al, Ni, NiAl, and Ni3Al from First-Principles Calculations [ J]. Acta Mater, 2004, 52:2 665 -2 671.
  • 4Shang S L, Wang Y, Kim D E, et al. Structural, Vibrational, and Thermodynamic Properties of Ordered and Disordered Ni1-xPtxAl-loys from First-Principles Calculations [J]. Phys Rev B, 2011, 83 : 144 204.
  • 5Connolly J W D, Williams A R. Density-Functional Theory Ap- plied to Phase Transformations in Transition-Metal alloys [ J ]. Phys Rev B, 1983, 27:5 169-5 172.
  • 6Van de Walle A, Ceder G. Automating First-Principles Phase Dia- gram Calculations [ J ]. J Phase Equilib, 2002, 23 : 348 - 359.
  • 7Van De Walle A. A Complete Representation of Structure-Property Relationships in Crystals [ J]. Nature Mater, 2008, 7:455 - 458.
  • 8Zunger A, Wei S H, Ferreira L G, et al. Special Quasirandom Structures [J]. Phys Rev Lett, 1990, 65:353 -356.
  • 9Jiang C, Wolverton C, Sofo J, et al. First-Principles Study of Binary bcc Alloys Using Special Quasirandom Structures [ J ]. Phys Rev B, 2004, 69: 214202.
  • 10Sbang S L, Wang Y, Lindwall G, et al. Cation Disorder Regulation by Microstate Configurational Entropy in Photovohaic Absorber MaterialsCu2ZnSn(S, Se)4[J], J Phys Chem C, 2014, 118: 24 884 -24 889.

二级参考文献24

  • 1Kaufman L, Bernstein H (1970) Computer calculation of phase diagram. Academic Press, New York.
  • 2United States Patent and Trademark Office (2012) Trademark Electronic Search System (TESS): Materials Genome (http:// tess2.uspto.gov/). November 2012.
  • 3National Science and Technology Council (2011) Materials genome initiative for global competitiveness, http://www.white house.gov/sites/default/files/microsites/ostp/materials_genome_ initiative-final.pdf.Office of Science and Technology Policy, Washington, DC. June 2011.
  • 4Kaufman L (1959) The lattice stability of metals. 1. Titanium and zirconium. Acta Metall 7:575-587.
  • 5Liu ZK, Chen LQ, Spear KE et al (2003) An integrated education program on computational thermodynamics, kinetics, and mate- rials design, http://www.tms.org/pubs/journals/JOM/O312/LiuII/ LiuII-0312.html.
  • 6Liu ZK, Chen LQ, Raghavan R et al (2004) An integrated framework for multi-scale materials simulation and design. J Comput Aided Mater Des 11:183-199.
  • 7Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133-1138.
  • 8Liu ZK (2009) First-principles calculations and CALPHAD modeling of thermodynamics. J Phase Equilib Diffus 30:517-534.
  • 9Liu ZK (2009) A materials research paradigm driven by com- putation. JOM 61:18-20.
  • 10Olson GB (1997) Computational design of hierarchically struc- tured materials. Science 277:1237-1242.

共引文献3

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部