期刊文献+

参数未知混沌系统的分段函数投影同步及参数辨识

On Projective Synchronization and Parameter Identification of Piecewise Function in Unknown Chaotic System
下载PDF
导出
摘要 利用牵制控制技术,基于Lyapunov稳定性原理,设计自适应控制器和参数辨识法则,实现混沌系统的分段函数投影同步,对系统的未知参数进行辨识,数值仿真表明了控制器和参数辨识法则的有效性. This paper introduces the design of self-adaptive controller and parameter identification rules by means of the pinning control technology, based on the Lyapunov stability theorem. In order to realize the piecewise function projective synchronization in chaotic systems, the system's unknown parameters are identified. Numerical simulation shows the effectiveness of the controller as well as the parameter identification rules.
出处 《温州大学学报(自然科学版)》 2015年第2期1-7,共7页 Journal of Wenzhou University(Natural Science Edition)
基金 教育部科技研究重点项目(212180) 甘肃省国际科技合作计划项目(1104WCGA195) 定西师范高等专科学校青年人才工程资助项目(1329)
关键词 混沌系统 分段函数投影同步 参数辨识 Chaotic System Piecewise Function Projective Synchronization Parameter Identification
  • 相关文献

参考文献12

  • 1Pecora L M, Carroll T L. Synchronization in chaotic system [J]. Physical Review Letters, 1990, 64(4): 821-824.
  • 2Agiza H N. Chaos synchronization of Lü dynamical system [J]. Nonlinear Analysis, 2004, 58(2): 11-20.
  • 3Wang Y W, Guan Z H. Generalized synchronization of continuous chaotic system [J]. Chaos, Solitons & Fractals,2006, 27(1): 97-101.
  • 4Li G H. Modified projective synchronization of chaotic system [J]. Chaos Solitons & Fractals, 2007, 32(5):1786-1790.
  • 5Hu M F, Xu Z Y, Zhang R. Full state hybrid projective synchronization in continuous-time chaotic systems [J].Communications in Nonlinear Science and Numerical Simulation, 2008, 13(2): 456-464.
  • 6Hu M F. Full state hybrid projective synchronization of a general class of chaotic maps [J]. Communications inNonlinear Science and Numerical Simulation, 2008, 13(4): 782-789.
  • 7李德奎,李玉龙,张建刚,殷华敏.混合时滞驱动响应动力学网络的函数投影同步[J].河南科技大学学报(自然科学版),2011,32(6):64-68. 被引量:9
  • 8李德奎,张建刚.时滞和非时滞耦合的驱动响应动态网络的函数投影同步[J].太原理工大学学报,2013,44(2):162-168. 被引量:21
  • 9Sudheer K S, Sabir M. Switched modified function projective synchronization of hyperchaotic Qi system withuncertain parameters [J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(12):4058-4064.
  • 10Li Z B, Zhao X S. Generalized function projective synchronization of two different hyperchaotic systems withunknown parameters [J]. Nonlinear Analysis: Real World Applications, 2011, 12(5): 2607-2615.

二级参考文献37

  • 1姚洪兴,张学兵,耿霞.Rucklidge系统的同步及其在保密通讯中的应用[J].江苏大学学报(自然科学版),2006,27(2):185-188. 被引量:13
  • 2He Guangming, Yang Jingyu. Adaptive Synchronization in Nonlinearly Coupled Dynamical Networks [ J ]. Chaos Solitons and Fractals ,2008,38 (5) : 1254 - 1259.
  • 3Wang Xiaofan, Chen Guanrong. Synchronization in Small-world Dynamical Networks [ J ]. Int J Bifurcation and Chaos ,2002, 12(1) :187 - 192.
  • 4Agiza H N. Chaos Synchronization of Lti Dynamical System [ J ]. Nonlinear Analysis,2004,58 (1/2) :11 -20.
  • 5Arkady S P, Michael G R, Grigory V O, et al. Phase Synchronization of Chaotic Oscillators by External Driving[J]. Physica D : Nonlinear Phenomena, 1997,104 ( 3/4 ) :219 - 238.
  • 6Li C D, Liao X F, Wong K W. Chaotic Lag Synchronization of Coupled Time-delayed Systems and Its Applications in Secure Comunication [ J ]. Physica D : Nonlinear Phenomena, 2004,194 ( 3/4 ) : 187 - 202.
  • 7Rulkov N F, Sushchik M M, Tsimring L S, et al. Generalized Synchronization of Chaos in Directionally Coupled Chaotic Systems[ J]. Phys Rev E, 1995,51:980 - 994.
  • 8Li G H. Modified Projective Synchronization of Chaotic System [ J ]. Chaos Solitons and Fractals, 2007,32 (5) :1786 - 1790.
  • 9Hu Manfeng,Yang Yongqing, Xu Zhenyuan, et al. Projective Synchronization in Drive-response Dyanmical Networks [ J ]. Physica A ,2007,381:457 - 466.
  • 10Zhang Rong, Yang Yongqing, Xu Zhenyuan, et al. Function Projective Synchronization in Drive-response Dyanmical Network[ J]. Physica A ,2010,374(30) :3025 - 3028.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部