期刊文献+

基于支持向量机的蛋白质相互作用界面热点残基预测

Predicting of Hot Spots at Protein Interfaces Using Support Vector Machines
下载PDF
导出
摘要 针对蛋白质相互作用界面中的热点残基是局部紧凑地聚集着,而现有的基于机器学习的热点残基预测方法仅从目标残基中提取特征,并没有考虑目标残基的局部空间结构信息,以及如何进行特征提取并获得非冗余的特征子集等问题,为准确识别蛋白质相互作用界面的热点残基,提出结合蛋白质相互作用界面残基的空间邻近残基信息提取多类特征,并利用随机森林来进行特征提取,最后利用支持向量机来预测热点残基的方法.计算实验表明,该预测方法可以有效地用来发现热点残基. Hot spots at protein interfaces were found to be clustered within locally and tightly packed regions. However, the existing machine learning based on hot spot prediction methods only gets features from the target residue, and does not consider the local spatial information of the target residue. Meanwhile, how to conduct the feature selection and obtain the sub- sets without redundant features should also be considered. In order to accurately identify hot spot residues at protein interfaces, this research tried to get various features by taking into consideration the spatial neighbor residues of each interface residue, and the feature selection was conducted by using random forests. Thereafter, the support vector machine was employed to predict the hot spots at protein interfaces. Computational experiments show that our prediction method can effec- tively discover hot spot residues.
出处 《天津科技大学学报》 CAS 北大核心 2015年第2期70-74,共5页 Journal of Tianjin University of Science & Technology
基金 天津市高等学校科技发展基金资助项目(20120803) 天津市科技支撑计划重点资助项目(12ZCZDGX02400)
关键词 蛋白质相互作用界面 热点 支持向量机 随机森林 protein interface hot spot support vector machine random forest
  • 相关文献

参考文献13

  • 1Bogan A A,Thorn K S.Anatomy of hot spots in protein interfaces[J].Journal of Molecular Biology,1998,280(1):1–9.
  • 2Cunningham B C,Wells J A.High-resolution epitope mapping of hgh-receptor interaction by alanine-scanning mutagenesis[J].Science,1989,244(4908):1081–1085.
  • 3Thorn K S,Bogan A A.ASEdb:A database of alanine mutations and their effects on the free energy of binding in protein interactions[J].Bioinformatics,2001,17(3):284–285.
  • 4Fischer T B,Arunachalam K V,Bailey D,et al.The binding interface database(BID):A compilation of amino acid hot spots in protein interfaces[J].Bioinformatics,2003,19(11):1453–1454.
  • 5Moreira I S,Femandes P A,Ramos M J.Hot spots-A review of the protein-protein interface determinant amino-acid residues[J].Proteins,2007,68(4):803–812.
  • 6Li X,Keskin O,Ma B,et al.Protein-protein interactions:Hot spots and structurally conserved residues often locate in complemented pockets that preorganized in the unbound states:Implications for docking[J].Journal of Molecular Biology,2004,344(3):781–795.
  • 7Wang L,Liu Z P,Zhang X S,et al.Prediction of hot spots in protein interfaces using a random forest model with hybrid features[J].Protein Engineering Design and Selection,2012,25(3):119–126.
  • 8Sobolev V,Sorokine A,Prilusky J,et al.Automated analysis of interatomic contacts in proteins[J].Bioinformatics,1999,15(4):327–332.
  • 9Mihel J,Sikic M,Tomic S,et al.PSAIA-protein structure and interaction analyzer[J].BMC Structural Biology,2008,8(1):21.
  • 10Kortemme T,Baker D.A simple physical model for bind ing energy hot spots in protein-protein complexes[J].Proceedings of the National Academy of Sciences of the United States of America,2002,99(22):14116–14121.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部