期刊文献+

基于光谱-空间信息的高光谱遥感图像混合噪声评估 被引量:7

A spectral-spatial information based approach for the mixed noise estimation from hyperspectral remote sensing images
下载PDF
导出
摘要 综合利用高光谱图像的光谱信息和空间信息,提出了一种新的混合噪声评估方法.首先通过滤波算法进行图像中均匀图像块的自动选取;然后利用多元线性回归模型,将均匀图像块内像素点的信号值和噪声值进行分离,并实现了图像中加性、乘性噪声的粗评估;最后根据噪声模型构建似然函数,利用最大似然估计法求解噪声模型参数.通过仿真图像和真实高光谱图像进行实验,验证了该方法的准确性和鲁棒性. A novel mixed noise estimation method based on the spectral and spatial information of hyperspectral images was reported. Firstly, homogeneous image blocks were automatically detected using data masking. Then signal value and noise value of each pixel in homogeneous blocks were split with a multiple liner regression model. Meanwhile, rough ap- proximations of SD and SI noise were obtained. Finally, likelihood function was built based on the mixed noise model, where parameters of the noise model were calculated by maximum-likelihood estimation approach. The proposed method is demonstrated to be accurate and robust by experiments with both synthetic images and real hvoersoectral images.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2015年第2期236-242,共7页 Journal of Infrared and Millimeter Waves
基金 江苏省普通高校研究生科研创新计划项目(CXZZ13_0211) 国家自然科学基金(61273251 61401209) 十二五民用航天技术预先研究项目(D040201) 江苏省自然科学基金(BK20140790) 中国博士后科学基金(2014T70525 2013M531364)~~
关键词 混合噪声 噪声评估 乘性噪声 加性噪声 高光谱遥感图像 噪声模型 mixed noise, noise estimation, signal-dependent noise, signal independent noise, hyperspectral remote sensing images, noise model
  • 相关文献

参考文献18

  • 1赵春晖,齐滨,Eunseog Youn.基于蒙特卡罗特征降维算法的小样本高光谱图像分类[J].红外与毫米波学报,2013,32(1):62-67. 被引量:9
  • 2Bisceglie M D, Episcopo R, Galdi C, et al. Destriping MO- DIS data using overlapping field-of-view method [ J ]. 1EEE Transactions on Geoscience and Remote Sensing, 2009,47 (2) .- 637 -651.
  • 3Zhang L, Zhang L, Tao D, et al. On combining multiplefeatures for hyperspectral remote sensing image classification [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(3) : 879-893.
  • 4Fauvel M, Chanussot J, Benediktsson J A. A spatial-spec- tral kernel-based approach for the classification of remote- sensing images [ J ]. Pattern Recognition, 2012, 45 ( 1 ) : 381 - 392.
  • 5Ammari H, Gamier J, Solna K. A statistical approach to target detection and localization in the presence of noise [J]. Waves in Random and Complex Media, 2012,22(1) : 40 - 65.
  • 6Roger R E, Arnold J F. Reliably estimating the noise in AVIRIS hyperspeetral images [ J ]. International Journal of Remote Sensing, 1996,17(10): 1951-1962.
  • 7Gao L R, Zhang B, Zhang X, et al. A new operational method for estimating noise in hyperspectral images [ J ]. IEEE Geoscience and Remote Sensing Letters, 2008,5 ( 1 ) : 83 - 87.
  • 8Fu P, Sun Q S, Ji Z X, et al. A new method for noise esti- mation in single-band remote sensing images [ C 1. In IEEE 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) , 2012 : 1664 - 1668.
  • 9Gao L R, Du Q, Zhang B, et al. A comparative study on linear regression-based noise estimation for hyperspectral imagery[ J ]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013,6(2) : 488 - 498.
  • 10Foi A, Trimeche M, Katkovnik V, et al. Practical Poisso- nian-Gaussian noise modelling and fitting for single-image raw-data [ J ]. IEEE Transactions on Image Processing, 2008,17(10) : 1737 - 1754.

二级参考文献8

共引文献8

同被引文献40

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部