期刊文献+

非平稳到达的二元相依风险模型的破产概率研究

Ruin Probabilities with Time-correlated for Risk Processes with Non-stationary Arrivals
下载PDF
导出
摘要 考虑一类相依索赔的二元风险模型,在该模型中假设发生主副两种索赔,主索赔尾部是次指数分布的非平稳到达过程的风险过程,当主索赔次数满足大偏差原理时,获得了主副索赔额均服从次指数分布时的有限水平和无限水平的破产概率与整体尾部的渐进表达式. This paper considered a risk model with time-correlated claims,in which it was assumed that every lord claim can randomly produce a delayed claim and lord claim tail is a non-stationary arrival risk process under sub-exponential distributions. We obtained the asymptotic expression of claims that obeys ruin probability and ensemble tail in finite level and infinite level under subexponential distributions when times of lord claim satisfy the large deviation principle.
出处 《吉林师范大学学报(自然科学版)》 2015年第2期73-78,共6页 Journal of Jilin Normal University:Natural Science Edition
基金 国家自然科学基金项目(61203139) 安徽省重点教研项目(2012jyxm277)
关键词 风险模型 破产概率 次指数分布 非平稳过程 相依索赔 risk model ruin probability sub-exponential distributions non-stationary processes time-correlated
  • 相关文献

参考文献10

  • 1L. Zhu. Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims [J]. Mathematics and Economics,2013,53 (3) 544 - 550.
  • 2R. S. Ambagaspitiya. On the distribution of a sum of correlated aggregate claim [J]. Mathematics and Economics, 1998,23 ( 1 ) : 15 - 19.
  • 3R. S. Ambagaspitiya. On the distributions of two classes of correlated claims [J]. Mathematics and Economics, 1999,24 (3) :301 -308.
  • 4张冕,高珊.一类索赔相依二元风险模型的破产概率问题研究[J].经济数学,2008,25(2):132-135. 被引量:9
  • 5C. M. Goldie, S. Resbick. Distributions that are both subexponential and in the domain of attraction of an extreme value distribution [J]. Advance in Applied Probability, 1988,20 (4) : 706 - 718.
  • 6P. Embrechts, N. Veraverbeke. Estimates for the probability of ruin with special emphasis on the probability of large claim [J]. Mathematics andEconomics, 1982,1 ( 1 ) :55 - 72.
  • 7A. Dembo, O. Zeitouni. Large deviations techniques and applications [M]. New York : Springer, 1998.
  • 8C. Klttppelberrg,T. Mikoseh. Large deviations of heavy--tailed random sums with applications in insurance and finance[J]. 1997,34(2) :193 -308.
  • 9S. Asmusssenet, C. Kltippelberrg. Large deviations results for subexponential tail with applications to insurance risk [J]. Stochastic Processes and their Applications, 1996,64 ( 1 ) : 103 - 125.
  • 10S. Asmusssenet, H. Albrecher. Ruin probability [M]. Singapore: World Scientific ,2010.

二级参考文献8

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部