期刊文献+

亚临界Hopf分岔附近的随机自共振

Stochastic Resonance Near Subcritical Hopf Bifurcations Point
下载PDF
导出
摘要 用INa,p+IK神经元数学模型,研究了其在亚临界霍普夫(Hopf)分岔点附近的随机节律,此随机节律为阵发节律,对分岔附近的随机节律通过两个不同的信噪比特征进行分析,发现了随机自共振现象。该结果不仅揭示亚临界Hopf分岔点附近随机节律的特征,而且给现实神经系统的亚临界Hopf分岔点附近的随机节律提供一个判断指标。 The stochastic rhythm was studied near subcritical Hopf bifurcation point in INa,p+IKneuron model and identified to be an on-off rhythm. Correspondingly, the autonomous stochastic resonance induced by noise was also studied by two different the signal - to - noise ratio (SNR). The results not only reveal the dynamics and characteristics of firing patterns near the subcritical Hopf bifurcation point but also provide practical method to identify the subcritical Hopf bifur- cation point in nervous system.
机构地区 赤峰学院
出处 《廊坊师范学院学报(自然科学版)》 2015年第2期11-13,共3页 Journal of Langfang Normal University(Natural Science Edition)
基金 内蒙古自治区自然科学基金面上项目(2012MS0103)资助
关键词 HOPF分岔 随机自共振 神经放电模式 Hopf bifurcation autonomous stochastic resonance neural firing pattern
  • 相关文献

参考文献8

  • 1L isman JE. Bursts as a unit of neural information: making nureliable synapses rehable[J]. TINS, 1997, (20) :38 - 43.
  • 2Menende L, Stollenwerk N, Sanchez-Andres JV. Bursting as a source for predictability in biological neural network activity[J]. Physica D, 1997, (110) :323 - 331.
  • 3Gu, H.G., Yang M.H., Li L., Liu Z.Q. and Ren W. Noise induced multi - mode neural firings in a period add- ing bifurcation scenario[ J]. International Journal of Modern Physics B, 2003, (17) : 4195 - 4200.
  • 4Gu, H.G., Ren W., Lu Q.S., Wu S.G., Yang M.H. and Chen W.J. Integer multiple spiking in neuronal pace- makers without external periodic stimulation I J]. Physics Letters A,2001, (285) :63 - 68.
  • 5古华光,任维,杨明浩,陆启韶.神经起步点产生的一种新型簇放电节律——阵发周期1节律[J].生物物理学报,2002,18(4):440-447. 被引量:9
  • 6古华光,李莉,杨明浩,刘志强,任维.实验性神经起步点产生的整数倍簇放电节律[J].生物物理学报,2003,19(1):68-72. 被引量:9
  • 7李玉叶,王晓英.亚临界Hopf分岔附近的神经放电的随机节律[J].赤峰学院学报(自然科学版),2014,30(11):1-2. 被引量:1
  • 8G Hu, T Ditzinger, CZ Ning. Stochastic resonance with- out external periodic force[J]. Phys Rev Lett, 1993, (71) :807 - 810.

二级参考文献26

  • 1Fan YS, Chay TR. Generation of periodic and chaotic bursting in an excitable cell model[J]. Biol Cybern, 1994,71:417~431.
  • 2Plant RE. Bifurcation and resonance on a model for bursting nerve cells[J]. J Math Boil, 1981,11:15~32.
  • 3Del Negro CA, Hsiao CH, Chandler SH, et al. Evidence for a novel bursting mechanism in rodent trigeminal neurons[J].Biophys J, 1998,75:174~182.
  • 4Chay TR, Fan YS, Lee YS. Bursting, spiking, chaos, fractals,and universality in biological rhythms[J]. Int J Bifure Chaos,1995,5:595~635
  • 5Baltanas JP, Casado JM. Bursting behavior of the FitzHugh-Nagumo neuron model subject to quasi-monochromatic noise[J]. Phys D, 1998,122:231~240.
  • 6Wu SG, Ren W, He KF, et al. Burst and coherence in Hindmarsh-Rose model induced by additive noise[J]. Phys Lett A,2001,279:347~354.
  • 7Longtin A. Autonomous stochastic resonance in bursting neurons[J]. Phys Rev E, 1997,55:868~877.
  • 8Hindmarsh JL, Rose RM. A model of the nerve impulse using two first-order differential equations[J]. Nature, 1982,296:162~164.
  • 9Hindmarsh JL, Rose RM. A model of the neuronal bursting using three coupled first-order differential equations[J]. Proc R Soc Lond, 1984,B322:87~102.
  • 10Holden AV, Fan YS. From simple to simple bursting oscillatory behavior via chaos in the Rose-Hindmarsh model for neuronal activity[J]. Chaos Solitons Fractals, 1992,2:221~236.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部