期刊文献+

基于用户粉丝聚类现象的微博僵尸用户检测 被引量:8

Detecting Zombies in Microblog Based on the Clustering Phenomenon of Fans
下载PDF
导出
摘要 随着微博人气的日益高涨,僵尸用户的数量正以惊人的速度增长,虚假导致的微博信任危机严重影响了微博的发展.目前普遍依据关注数、粉丝数、原创和转发信息频率等用户基本属性来判定僵尸粉.然而,微博用户类型纷繁复杂,存在大量的误判和漏判现象.本文通过从用户的粉丝中挖掘凝聚子群,并结合用户的社会网络关系,提出一种基于用户粉丝聚类现象的僵尸粉检测模型.实验结果表明,本模型只需要少量信息就可以有效地对僵尸粉进行检测. With the growing popularity of microblog, the amount of zombies is increasing rapidly. The crisis of confidence caused by fake seriously affects the development of microblog. At present,most of the technologies of detecting zombies are based on the basic characters of microbloggers such as the followings' counts, the followers' count,the frequency of writing tweets and retweeting. How- ever, since the kinds of microbloggers are complicated, there are a lot of misjudgments and false negatives. The paper proposes a zom- bies detecting model based on the clustering phenomenon of fans by mining communities from microbloggers' fans,and users' social networks. The experimental results show that the model can detect zombies effectively with less information.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第5期1007-1011,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(U1304603)资助 河南省教育厅科学技术研究重点项目(13A520651)资助 郑州市重大科技专项(131PZDZX050)资助
关键词 微博 僵尸粉 社会网络 识别模型 microblog zombies social network recognition model
  • 相关文献

参考文献6

二级参考文献57

  • 1解(亻刍),汪小帆.复杂网络中的社团结构分析算法研究综述[J].复杂系统与复杂性科学,2005,2(3):1-12. 被引量:86
  • 2彭泗清.信任的建立机制:关系运作与法制手段[J].社会学研究,1999(2):55-68. 被引量:381
  • 3王林,戴冠中.复杂网络中的社区发现——理论与应用[J].科技导报,2005,23(8):62-66. 被引量:50
  • 4CARUANA G, LI MAOZHEN, QI HAO. SpamCloud: a MapReduce based anti-spam architecture [ C]// FSKD'10: Proceedings of 7th International Conference on Fuzzy Systems and Knowledge Discovery. Yantai, China: [s. n. ], 2010, 6:3003-3006.
  • 5BEGRICHE Y, LABIOD H. A prior distribution for anti-spam statistical Bayesian model [ C]// N2S'09: International Conference on Network and service Security. Piscataway, NJ: IEEE, 2009:1 -5.
  • 6DEAN J, GHEMAWAT S. MapReduee: simplified data processing on large clusters [ C]// OSDI'04: Proceedings of the 6th USENIX Symposium on Operating Systems Design and Implementation. [ S. l.] : USENIX, 2004. 137 - 150.
  • 7DEAN J, GHEMAWAT S. MapReduce: a flexible data processing tool [ J]. Communications of the ACM, 2010, 53(1) : 72 - 77.
  • 8RISH I. An empirical study of the naive Bayes classifier [ C]//Proceedings of UCAI Workshop on Empirical Methods in Artificial Intelligence. [S.I.]: IJCA1, 2001:41-46.
  • 9中国教育和科研计算机网紧急响应组(CCERT)【EB/OL].[2011—01—15】.http://www.ccert.edu.cn/spam/sa/datasets.htm.
  • 10中文自然语言处理开放平台(CNLP—Platform)【EB/OL】.【2011—01—15】.http://www.nlp.org.cn/docs/download.php?doc_id=1207.

共引文献135

同被引文献65

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部