期刊文献+

开放可伸缩关系数据模型

Open Scalable Relational Data Model
下载PDF
导出
摘要 数据模型研究是大数据领域中的一项基础性工作,能够为上层数据库构建、数据存取、数据分析和挖掘提供有力支撑.首先,针对传统关系数据模型数据类型受限,大数据集查询性能低和横向伸缩性不足的缺陷,提出一个开放可伸缩关系数据模型,该模型保留并扩展了传统关系模型的关系描述能力,提供开放的数据类型支持,并借鉴key-value的思想,提供了完全的横向伸缩特性,迎合了大数据体量庞大、类型多样、增长迅速的特点.然后,从功能特性和性能指标两方面,将OSRDM与主流数据模型进行分析对比,评价结果说明OSRDM的优越性. In the field of data science, data model research plays a fundamental role that strongly supports the upper levels of database construction, data access, data analysis and mining. However, in traditional databases, there are restrictions of limited data types, low query performance and lack of horizontal scalability. Considering these factors,this paper puts forward an Open Scalable Relational Data Model. This model brings an open support for data types and complete horizontal scalability on basis of keeping and extending the relation descriptive power of the traditional relational data model. This caters to the characteristics of big data such as volume, variety and velocity. Then OSRDM is analyzed and evaluated by being compared with popular data models from two aspects:functional features and query performance. The result shows the superiority of OSRDM.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第5期1012-1016,共5页 Journal of Chinese Computer Systems
基金 河南省国际科学技术合作项目(144300510007)资助
关键词 分布式数据库 关系数据模型 NoSQL数据模型 模型评价 distributed database relational data model NoSQL data model model evaluation
  • 相关文献

参考文献16

  • 1Big Data. Wikipedia [ EB/OL]. http://en, wikipedia, org/wiki/ Big_data,2014.
  • 2February. Kostas Glinos. E-Infrastructures for big data: opportunities and challenges [ J ]. Ercim News,2012 (89) :2-3.
  • 3于利胜,张延松,王珊,张倩.基于行存储模型的模拟列存储策略研究[J].计算机研究与发展,2010,47(5):878-885. 被引量:10
  • 4Neal Leavitt. Will NoSQLDatabases live Up to their promise [ J ]. IEEE Computer Society, 2010,43 ( 2 ) : 12 - 14.
  • 5李超,张明博,邢春晓,胡劲松.列存储数据库关键技术综述[J].计算机科学,2010,37(12):1-7. 被引量:24
  • 6Chang F,Dean J, Ghemawat S, et al. Bigtable : a distributed storage system for structured data[ J ]. ACM Transactions on Computer Sys- tems ( TOCS ) ,2008,26 (2) :4.
  • 7The Apache I-1Base Reference Guide. Apache HBase [ EB/OL ]. http ://hbase. apache, org/book, htm1,2014.
  • 8February. Ghemawat S, Gobioff H, Leung S T. The google file system [ C ]. Acm Sigops Operating Systems Review. ACM, 2003,37 ( 5 ) : 29- 43.
  • 9Hvachko K, Kuang H, Radia S, et al. The hadoop distributed file system[ C ]. Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on. IEEE,2010:I-10.
  • 10Bryant R, Katz R H,Lazowska E D. Big-data computing:creating revolutionary breakthroughs in commerce science and Society [ EB/ OL]. http://www, cra. org/ccc/files/docs/init/Big-Data, pdf, 2008.

二级参考文献13

  • 1Stonebraker M,Daniel J.C-store:A column-oriented DBMS[C] //Proc of the 31st Int Conf on Very Large Databases (VLDB).San Francisco:Morgan Kaufmann,2005:553-564.
  • 2Boncz P,Kersten M,Manegold S.Breaking the memory wall in monetDB[J].Communications of the ACM,2008,51(12):77-85.
  • 3Ailamaki A,David J,Mark D,et al.Weaving relations for cache performance[C] //Proc of the 27th Int Conf on Very Large Databases (VLDB).San Francisco:Morgan Kaufmann,2001:169-180.
  • 4Daniel J,Daniel S,David J.Materialization strategies in a column-oriented DBMS[C] //Proc of the Int Conf on Data Engineering(ICDE).Los Alamitos:IEEE Computer Society,2007:466-475.
  • 5Halverson A,Bechmann J.A comparison of c-store and row-store in a common framework[C] //Proc of the 32nd Int Conf on Very Large Databases (VLDB).New York:ACM,2006:169-180.
  • 6Zukowski M,Niels N,Boncz P.DSM vs NSM:CPU performance tradeoffs in block-oriented query processing[C] //Proc of the 4th Int Workshop on Data Management on New Hardware (DaMoN).New York:ACM,2008:47-54.
  • 7Daniel J A,Samuel R M,Hachem N.Column-stores vs row-stores:How different are they really[C] //Proc of the 2007 ACM SIGMOD Conf.New York:ACM,2008:967-980.
  • 8Richard A H,Jignesh M P.Data morphing:An adaptive,cache-conscious storage technique[C] //Proc of the 29th Int Conf on Very Large Databases (VLDB).San Francisco:Morgan Kaufmann,2003:417-428.
  • 9Johnson R,Raman V,Sidle R,et al.Row-wise parallel predicate evaluation[C] //Proc of the 34th Int Conf on Very Large Databases (VLDB).New York:ACM,2008:622-634.
  • 10Bruno N.Teaching an old elephant new tricks[C] //roc of the 4th Conf on Innovative Data Systems Research (CIDR).New York:ACM,2009:203-215.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部