期刊文献+

一种高斯反向学习粒子群优化算法 被引量:7

Particle Swarm Optimization Algorithm with Gaussian Opposition-based Learning
下载PDF
导出
摘要 针对粒子群算法在处理多峰复杂问题时,收敛速度慢且容易陷入局部最优的缺点,提出一种高斯反向学习粒子群优化算法(GOL-PSO).针对历史最优粒子间无法相互交流,增加一种高斯反向学习机制来提高粒子的学习能力,进而提高算法的搜索能力,另外算法在更新公式中引入"历史最优平均值"因子来提高算法的收敛速度.经过在8个测试函数的仿真实验中,与一些改进的粒子群算法进行比较,GOL-PSO有5个测试函数的测试效果最好,且T检验结果表明算法结果有明显提高,同时算法收敛对比分析结果表明,本文算法具有良好的全局搜索能力和较快的收敛速度. To the weaknesses of easily get trapped in the local optima and poor convergence speed when solving complex multimodal problems, a particle swarm optimization algorithm with Gaussian opposition-based learning is proposed. A strategy of gaussian and opposition-based learning is performed when the local best particle is not change with other. The strategy will improve algorithm's search ability, through enhancing learning ability. Then to enhance the convergence speed, when producing the velocity update pattern with the factor of local best average. The simulation results of the problem in 8 test functions show that, compared with other improved PSO variants, GOL-PSO is better than other algorithms in 5 test functions. What's more, both the T-test and the convergence analysis of the algorithm show that GOL-PSO has good global search ability and faster convergence speed.
机构地区 解放军理工大学
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第5期1064-1068,共5页 Journal of Chinese Computer Systems
关键词 粒子群优化 高斯学习 反向学习 群智能算法 particle swarm optimization gaussian learning opposition-based learning swarm intelligence algorithm
  • 相关文献

参考文献14

  • 1Kennedy J, Eberhart R. Particle swarm optimization [ C ]. IEEE Int. 1 Conf. on Neural Networks. Perth, Australia, IEEE Service Center Piscataway NJ, 1995 : 1942-1948.
  • 2Shi Y, Eberhart R C. A modified particle swarm optimizer[J ]. In Proc. IEEE Congr. Evol. Comput, 1998,14(6) :69-73.
  • 3Clerc M, Kennedy J. The particle swarm -explosion, stability, and convergence in a multidimensional complex space[ J]. IEEE Trans. Evol. Comput, 1999 : 1931-1938.
  • 4Zhan Zhi-hui, Zhang Jun,Li Yun, et al. Adaptive particle swarm op- timization[ J]. IEEE Transations on System, Man and Cybernetics- part B : Cybernetics,2009,39 (6) : 1362-1381.
  • 5Fan S ,Zahara E. Hybrid simplex search and particle swarm optimi- zation for unconstratined optimization problems E J ]. European J of Operational Research ,2007,181 (2) :527-548.
  • 6Jiang C W, Etorre B. A hybrid method of chaotic particle swarm op- timization and linear interior for reactive power optimization [ J l- Mathematics and Computers in Simulation. 2005,68 ( 1 ) :57-65.
  • 7Liang J J,Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multi-modal function [ J 1. IEEE Transaction on Evolutionary Computation, 2006,10 (3) :281-295.
  • 8Hart Huang, Hu Qin, Hat Zhi-feng, et al. Example-based learning particle swarm optimization for continuous optimization [ J ]. Infor- mation Sciences. 2012,182 ( 1 ) : 125-138.
  • 9Wang Hui, Wu Zhi-jian, Shahryar Rahnamayan, et al. Enhancing particle swarm optimization using generalized opposition-based learning[ J]. Information Sciences,2011,12 (4) : 1-16.
  • 10高卫峰,刘三阳,焦合华,秦传东.引入人工蜂群搜索算子的粒子群算法[J].控制与决策,2012,27(6):833-838. 被引量:23

二级参考文献16

  • 1Kennedy J, Eberhartr C. Particle swarm optimization [C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE Piscataway, 1995: 1942-1948.
  • 2Bergh F, Engelbreeht A P. A cooperative approaeh to partiele swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 225-239.
  • 3Ratnaweera A, Halgamuge S, Waton H C. Self-organizing hierarehieal partiele Swarm optimizer with time-varying Acceleration coef?eients [J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 240-255.
  • 4Jiao B, Lian Z G, Gu X S. A dynamic inertia weight particle swarm optimization algorithm [J]. Chaos Solitons & Fractals, 2008, 37(3): 698-705.
  • 5Jiang C W, Etorre B. A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization [J]. Mathematics and Computers in Simulation, 2005, 68(1): 57-65.
  • 6Fan S, Zahara E. Hybrid simplex search and particle swarm optimization for unconstratined optimization problems [J]. European Journal of Operational Research, 2007, 181 (2): 527-548.
  • 7Liang J J, Qin A K, Suganthan P N, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10 (3): 281-295.
  • 8Zhan Z H, Zhang J, Li Y, Chung H H. Adaptive particle swarm optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, 2009, 39 (6): 1362-1381.
  • 9Liu B, Wang L, Jin Y H, Tang F, Huang D X. Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals, 2005, 25 (2): 1261-1271.
  • 10Rahnama S, et al. Opposition-Based Differential Evolution [J]. IEEE Transactions on Evolutionary Computation, 2008, 12 (1): 64-79.

共引文献22

同被引文献66

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2郎永强,张学广,徐殿国,马洪飞,Hadianmrei S.R.双馈电机风电场无功功率分析及控制策略[J].中国电机工程学报,2007,27(9):77-82. 被引量:225
  • 3胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 4王辉,钱锋.群体智能优化算法[J].化工自动化及仪表,2007,34(5):7-13. 被引量:60
  • 5KENNEDY J, EBERHART R. Particle swarm optimization [ C]// Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE, 1995,4:1942-1948.
  • 6SHI Y, EBERHART R. A modified particle swarm optimize [ C]// Proceedings of IEEE International Conference on Evolutionary Computation. Piscataway, NJ: IEEE, 1998:69-73.
  • 7KENNEDY J, EBERHART R, SHI Y. Swarm intelligence [ M]. San Francisco: Morgan Kaufmann Publishers, 2001:227 -229.
  • 8ZHANG L, TANG Y, HUA C, et al. A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques [ J]. Applied Soft Computing, 2015, 28:138 -149.
  • 9TSAI H-C, TYAN Y-Y, WU Y-W, et al. Gravitational particle swarm [J]. Applied Mathematics and Computation, 2013, 219 (17) :9106 -9117.
  • 10RATNAWEERA A, HALGAMUGE S, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[ J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3) : 240 -255.

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部