期刊文献+

加权最小顶点覆盖的加权分治算法

Measure and Conquer Algorithm for Minimum Weighted Vertex Cover Problem
下载PDF
导出
摘要 加权分治技术是算法设计和分析中的一种新技术,该技术通过对处理对象设置不同的权值来更加精确的描述分支子问题规模的大小,其目的是得到最坏情况下时间复杂性更好的精确算法.加权最小顶点覆盖问题是一典型的NP难题,基于分支降阶技术为其设计一个快速递归算法;同时使用加权分治技术对算法加以分析,得到一个时间复杂性为O(1.3482np(n))的精确算法,其中p(n)为问题中结点个数n的多项式函数,对比分析表明该时间复杂性低于采用传统方法得到的时间复杂性. The measure and conquer approach is a new technique for algorithm design and analysis. The approach is based on the definition of a suitable measure of the subproblems, so as to obtain the best running time in the worst case. minimum Weighted Vertex cover problem is a typical NP-hard problem. In this paper,a fast recursive algorithm based on the branch and reduce technology is designed. Then,the measure and conquer approach is used to analyze the algorithm, and proves that the running time of the algorithm is O ( 1. 3482^np ( n ) ), where p ( n ) is the polynomial function of node number n of the problem. Contrastive analysis shows that the running time of this approach is lower than that of the traditional approach.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第5期1082-1084,共3页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(51008196)资助 上海市一流学科建设项目(XTKX2012)资助
关键词 加权分治技术 加权最小顶点覆盖问题 分支降阶技术 算法复杂性 measure and conquer minimum Weighted Vertex cover problem branch and reduce technology algorithm complexity
  • 相关文献

参考文献2

二级参考文献58

  • 1肖鸣宇,陈建二,韩旭里.低度图的点覆盖和独立集问题下界改进[J].计算机学报,2005,28(2):153-160. 被引量:11
  • 2Haynes T W, Hedetniemi S T, Slater P J. Fundamentals of Domination in Graphs. New York= Marcel I)ekker Inc., 1998.
  • 3Held M, Karp R M. A dynamic programming approach to sequencing problems. Journal of SIAM, 1962, 10(1) 196- 210.
  • 4Tarjan R, Trojanowski A. Finding a maximum independent set. SIAM JournalonComputing, 1977, 6(3): 537-546.
  • 5Claude Berge. The Theory of Graphs and Its Applications. New York: Methuen & Co. : John Wiley & Sons, 1962.
  • 6Ore O. Theory of Graphs. Providence: American Mathematical Society, 1962.
  • 7Cockayne E J, Hedetniemi S T. Towards a theory of domination in graphs. Networks, 1977, 7(3) : 247-261.
  • 8Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: Freeman, 1979.
  • 9Chang G J, Nemhauser G L. The k domination and k- stability problems in sun-free chordal graphs. SIAM Journal on Algehraie and Discrete Methods, 1984, 5(3) : 332-345.
  • 10Miroslav Chlebik, Janka Chlebikova. Approximation hardness of dominating set problems//Albers S, Radzik T eds, ESA 2004. LNCS 3221. Berlin: Springer, 2004:192- 203.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部