期刊文献+

耳廓点云形状特征匹配的路径跟随算法 被引量:3

Shape Feature Matching Algorithm of Ear Point Cloud Using Path Following
下载PDF
导出
摘要 路径跟随算法结合凸松弛方法与凹松弛方法,通过跟随凸凹问题的解路径,近似地求解图匹配问题,具有较高的匹配精度.将路径跟随算法用于耳廓特征图的匹配问题:首先,基于PCA方法构造耳廓点云的显著性关键点集合;然后,采用乘积型参数域上的单值二次曲面方法拟合关键点邻域内的点集,并将曲面的局部形状特征定义为耳廓的局部形状相似测度;第三,对关键点集合进行Delaunay三角剖分,得到关键点集合在三维空间内的拓扑结构图,并定义关键点图的整体结构差异测度;最后,记耳廓关键点图的组合差异测度为关键点图的整体结构差异测度与关键点上的局部形状相似测度的线性组合,并基于路径跟随算法快速求解关键点图之间的精确匹配.相关实验结果表明:与其他相关算法相比,该算法具有较高的匹配效率和匹配精度. Combining the convex and relaxations, and following the solution path of convex-concave problem, the path following algorithm exhibits an excellent accuracy on graph matching approximately. In this paper, the path following algorithm is employed to address the problem of ear matching. Firstly, the PCA method is used to construct the set of salient keypoints of 3D ear point cloud data.Then the neighborhood of each keypoint is fitted to a single-valued quadric surface on a tensor-product parameter domain to define the local shape feature on the surface as the similarity measures. Next, the keypoints are triangulated into 3D topological graph using Delaunay triangulation, and the global structure discrepancy on the graph is obtained. Finally, the overall similarity measure is marked as the linear interpolation combination of the graph structure discrepancy and the local shape feature discrepancy, and the path following algorithm is then used to address the optimal matching between two keypoint graphs. The experiments show that the presented method provides a better matching result in terms of efficiency and accuracy than other similar approaches.
出处 《软件学报》 EI CSCD 北大核心 2015年第5期1251-1264,共14页 Journal of Software
基金 国家自然科学基金(61472170 61170143 60873110 61370141) 智能通信软件与多媒体北京市重点实验室开发课题(ITSM201301)
关键词 耳廓识别 图匹配 关键点 局部形状特征 相似测度 路径跟随算法 ear recognition graph matching key point local shape feature similarity measure path following algorithm
  • 相关文献

参考文献24

  • 1Akutsu T, Tamura T. A polynomial-time algorithm for computing the maximum common connected edge subgraph of outer planar graphs of bounded degree. Algorithms, 2013,6( 1): 119-135. [doi: 10.3390/a6010119].
  • 2Abu-Khzam FN, Samatova NF, Rizk MA, Langston MA. The maximum common subgraph problem: Faster solutions via vertex cover. In: Proc. of the IEEE/ACS Int’l Conf. on Computer Systems and Applications. 2007. 367-373. [doi: 10.1 109/AICCSA.2007. 370907].
  • 3Islam SMS, Davies R, Bennamoun M, Mian AS. Efficient detection and recognition of 3D ears. Int’l Journal of Computer Vision, 201 l,95(l):52-73. [doi: 10.1007/sl 1263-011-0436-0].
  • 4Best PJ, McKay ND. A method for registration of 3D shapes. IEEE Trans, on Pattern Analysis and Machine Intelligence, 1992,14(2):239-256. [doi: 10.1109/34.121791].
  • 5Chen H, Bhanu B. Contour matching for 3D ear recognition. In: Proc. of the IEEE Workshop on Application of Computer Vision.2005. 123-128. [doi: 10.1109/ACVMOT.2005.38].
  • 6Ross A, Abaza A. Human ear recognition. IEEE Computer, 2011,44(1 X):79—81. [doi: 10.1109/MC.2011.344].
  • 7Weber M, Liwicki M, Dengel A. Faster subgraph isomorphism detection by well-founded total indexing. Pattern Recognition Letters, 2012,33(15):2011-2019. [doi: 10.1016/j.patrec.2012.04.017].
  • 8Yan P, Bowyer KW. Biometric recognition using three dimensional ear shape. IEEE Trans, on Pattern Analysis and Machine Intelligence, 2007,29(8): 1297-1308. [doi: 10.1109/TPAMI.2007.1067].
  • 9Zaslavskiy M, Bach F, Vert JP. Global alignment of protein-protein interaction networks by graph matching method. Bioinformatics, 2009,25( 12): 1 — 14. [doi: 10.1093/bioinformatics/btp234].
  • 10Zhu YY, Qin L, Yu JX, Ke YP, Lin XM. High efficiency and quality large graphs matching. In: Proc. of the 20th ACM Int’l Conf. on Information and Knowledge Management. 2011. 1157-1764. [doi: 10.1145/2063576.2063831].

二级参考文献21

  • 1李强,张钹.一种基于图像灰度的快速匹配算法[J].软件学报,2006,17(2):216-222. 被引量:112
  • 2任平红,陈矗.基于改进的边缘直方图的图像检索方法[J].计算机技术与发展,2007,17(8):183-186. 被引量:13
  • 3Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 4Caetano T S, Caelli T, Schuurmans D, et al. Graphical models and point pattern matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 ( 10 ) : 1646-1663.
  • 5Umeyama S. An eigendecomposition approach to weighted graph matching problems[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(5): 695-703.
  • 6Luo B, Hancock E R. Structural graph matching using the EM algorithm and singular value decomposition [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(10): 1120-1136.
  • 7Leordeanu M, Herbert M. A spectral technique for correspondence problems using pairwise constraints [C]// Proceedings of the 10th IEEE International Conference on Computer Vision. Los Alamitos:IEEE Computer Society Press, 2005: 1482-1489.
  • 8Shapiro L S, Brady J M. Feature-based correspondence: an cigenvector approach[J]. Image and Vision Computing, 1992, 10(5): 283-288.
  • 9Pilu M. A direct method for stereo correspondence based on singular value decomposition [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 1997:261-266.
  • 10Bai X, Yu H, Hancock E R. Graph matching using spectral embedding and alignment [C] //Proceedings of the 17th International Conference on Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2004, 3:398-401.

共引文献13

同被引文献30

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部