期刊文献+

Ethanol-assisted ablation of silicon and germanium by temporally shaped femtosecond pulses

Ethanol-assisted ablation of silicon and germanium by temporally shaped femtosecond pulses
原文传递
导出
摘要 A surprising phenomenon can be discovered by using femtosecond double-pulse ablation of silicon and germa- nium in ethanol. Tile ablation areas present an oscillation increase phenomenon when the pulse delay increases from 200 fs to 1 ps in the fluence range of 0.5-0.6 3/cm2. In contrast, the ablation areas exhibit an oscillation decrease phenonmnon as the pulse delay increases when the laser fluence F 〈 0.5 J/cm9, which is consistent with the results of the experiment in air. It is considered that the adjustment of the photon-electron coupling efficiency by pulse train technology plays an important role in the ablation process. A surprising phenomenon can be discovered by using femtosecond double-pulse ablation of silicon and germa- nium in ethanol. Tile ablation areas present an oscillation increase phenomenon when the pulse delay increases from 200 fs to 1 ps in the fluence range of 0.5-0.6 3/cm2. In contrast, the ablation areas exhibit an oscillation decrease phenonmnon as the pulse delay increases when the laser fluence F 〈 0.5 J/cm9, which is consistent with the results of the experiment in air. It is considered that the adjustment of the photon-electron coupling efficiency by pulse train technology plays an important role in the ablation process.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第4期41-44,共4页 中国光学快报(英文版)
基金 supported by the National Basic Research Program of China(973 Program)(Grant No.2011CB013000) the National Natural Science Foundation of China(NSFC)(Grant Nos.91323301 and 51375051)
关键词 Electromagnetic pulse ETHANOL GERMANIUM Electromagnetic pulse Ethanol Germanium
  • 相关文献

参考文献24

  • 1R. R. Gattass and E. Mazur, Nat. Photonics 2, 219 (2008).
  • 2M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, Phys. Rev. B 75, 235414 (2007).
  • 3J. Wang and C. Guo, Appl. Phys. Lett. 87, 251914 (2005).
  • 4N. Leng, 1. Jiang, X. Li, C. C. Xu, P. J. Liu, and Y. F. Lu, Appl Pbys A 679, 109 (2012).
  • 5S. Bashir, H. Vaheed, and K. Mahmood, Appl. Phys. A 389, 110 (2013).
  • 6Y. Ju, C. Liu, Y. Liao, Y. Liu, L. Zhang, Y. Shen, D. Chen, and Y. Cheng, Chin. Opt. Lett. 11, 072201 (2013).
  • 7M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, J. Appl. Phys 113, 213106 (2013).
  • 8G. Daminelli, J. Kruger, and W. Kautek, Thin Solid Films 334, 467 (2004).
  • 9J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, Opt. Lasers Eng. 46, 306 (2008).
  • 10T. .i.v. Derrien, J. Kruger, T. E. Itina, S. Hohm, A. Rosenfeld, and J. Bonse, Opt. Express 21, 29643 (2013).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部