期刊文献+

Three-channel dual-wavelength fiber laser based on a digital micromirror-device processor and photonic crystal fiber

Three-channel dual-wavelength fiber laser based on a digital micromirror-device processor and photonic crystal fiber
原文传递
导出
摘要 A stable three-channel dual-wavelength fiber ring laser is proposed and experimentally demonstrated. The dig- ital mieromirror-deviee (DMD) processor can select and reeirculate any dual waveband from the gain spectrum of the erbium-doped fiber at each channel. The uniform and stable dual-wavelength oscillation is obtained by a highly nonlinear photonic crystal fiber, which causes two degenerate the four-wave-mixing processes. By loading different reproducibility diffraction gratings on the optoelectronic DMD processor, the laser can be operated stably in a three-channel dual-wavelength scheme at room temperature. The power fluctuation of each laser channel is less than -0.02 dB. A stable three-channel dual-wavelength fiber ring laser is proposed and experimentally demonstrated. The dig- ital mieromirror-deviee (DMD) processor can select and reeirculate any dual waveband from the gain spectrum of the erbium-doped fiber at each channel. The uniform and stable dual-wavelength oscillation is obtained by a highly nonlinear photonic crystal fiber, which causes two degenerate the four-wave-mixing processes. By loading different reproducibility diffraction gratings on the optoelectronic DMD processor, the laser can be operated stably in a three-channel dual-wavelength scheme at room temperature. The power fluctuation of each laser channel is less than -0.02 dB.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第4期50-53,共4页 中国光学快报(英文版)
基金 supported by the National Basic Research Program of China(2010CB327600) the Fundamental Research Funds for the Central Universities(2013RC1202) the Specialized Research Fund for the Doctoral Program of Higher Education(20120005120021) the Program for New Century Excellent Talents in University(NECT-11-0596) the Beijing Nova program(2011066)
  • 相关文献

参考文献11

  • 1S. J. Tan, S. W. Harun, H. Arof, and H. Ahmad, Chin. Opt. Lett. 11, 073201(2013).
  • 2P. Zhang, W. Ma, T. Wang, Q. Jia, and C. Wan, Chin. Opt. Lett. 12, 111403 (2014).
  • 3F. Xiao, K. Alameh, and T. T. Lee, Opt. Express 17,18676 (2009).
  • 4F. Xiao, K. Alameh, and T. T. Lee, Opt. Express 17, 23123 (2009).
  • 51. Peng, X. Z. Sang, B. B. Yan, X. Chen, Y. Q. Wang, Y. Zhang, F. Xiao, and K. Alameh, Opt. Laser Technol. 44, 935 (2012).
  • 6D. Zhang, B. B. Yan, K. Z. Huang, Q. Yang, X. Chen, G. X. Chen, and X. Z. Sang, Proc. SPIE 8555, 855501 (2012).
  • 7K. Z. Huang, B. B. Yan, X. Chen, G. X. Chen, Q. Ai, K. R. Wang, Y. Q. Wang, Y. Zhang, F. J. Song, Q. WU, and X. Z. Sang, Laser Phys. 22, 1833 (2012).
  • 8M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, M. Hofmann, and R. Hofling, Electron. Lett. 43, 456 (2007).
  • 9X. M. Liu, X. Q. Zhou, and C. Lu, Opt. Lett. 30, 2257 (2005).
  • 10X. M. Liu, X. Q. Zhou, X. F. Tang, J. H. Ng, J. Z. Hao, T. Y. Chai, E. Leng, and C. Lu, IEEE Photon. Technol. Lett. 17, 1626(2005).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部