期刊文献+

基于恒虚警率的双阈值检测方法 被引量:1

Dual-Threshold Detection Method Based on CFAR
下载PDF
导出
摘要 针对对海导航雷达视频图像背景灰度值分布不均匀,不同位置的目标与背景对比度不同的特点,以及对海导航雷达视频图像目标检测处理效率的要求,结合传统的阈值分割处理思路,提出一种基于恒虚警率的双阈值检测方法。该方法在保证低虚警率的基础上,结合现有的全局阈值和局部阈值两种处理思路,实现对对海导航雷达视频图像目标的快速精确检测,并在实测数据上与常用阈值检测算法Otsu算法进行了验证比较。结果证明,该算法能有效提高目标检测的准确度。 The distribution of the video image background grey value of naval navigation radar is not uni-form,and the contrast ratio between the different targets at different places and the background is different. In order to meet the requirement of target detection processing efficiency,combined with the traditional threshold segmentation,this paper puts forward a dual-threshold detection method based on CFAR.The method ensures a low false alarm rate,and combines the global threshold and local threshold to achieve fast and accurate target detection of the naval navigation radar video image.The comparison is made between the proposed algorithm and the Otsu algorithm.The results show that the algorithm can improve the accuracy of target detection effectively.
出处 《雷达科学与技术》 北大核心 2015年第2期154-158,共5页 Radar Science and Technology
基金 山东省自然科学基金青年基金(No.ZR2012FQ004)
关键词 目标检测 恒虚警率 阈值检测 雷达视频图像 target detection threshold detection radar video image
  • 相关文献

参考文献8

二级参考文献76

  • 1郭海涛,王连玉,田坦,张春田,孙鹤泉.利用二维属性直方图的Otsu自动阈值分割方法[J].光电子.激光,2005,16(6):739-742. 被引量:18
  • 2吴保奎,范素凤.改进的基于小波变换SAR图像去噪方法的性能评价[J].合肥工业大学学报(自然科学版),2006,29(3):379-381. 被引量:4
  • 3徐同莹,彭定明,王卫星.改进的直方图均衡化算法[J].兵工自动化,2006,25(7):58-59. 被引量:19
  • 4Zha Yufei Bi Duyan.Adaptive learning algorithm based on mixture Gaussian background[J].Journal of Systems Engineering and Electronics,2007,18(2):369-376. 被引量:9
  • 5郭桂蓉 谢维信 庄钊文 等.模糊模式识别[M].长沙:国防科技大学出版社,1993..
  • 6孙洪译.合成孑L径雷达图像处理[M].北京:电子工业出版社,2005.
  • 7Banerjee A, Burlina P, Chellappa R. Adaptive Target Detection in Foliage-Penetrating SAR Images Using Alpha-Stable Models[J~. IEEE Trans on Image Pro- cessing, 1999, 8(12):1823-1831.
  • 8Bisceglie M, Galdi C. CFAR Detection of Extended Objects in High-Resolution SAR Images[J]. IEEE Trans on Geoscience and Remote Sensing, 2005, 43 (4) :833-843.
  • 9Gao G, Liu L, Zhao I. J, et al. An Adaptive and Fast CFAR Algorithm Based on Automatic Censoring for Target Detection in High-Resolution SAR Images[J]. IEEE Trans on Geoscience and Remote Sensing, 2009, 40(6) : 1685-1697.
  • 10Oliver C J, Quegan S. Understanding Synthetic Aper- ture Radar Images[M]. Boston.. Artech House, 1998.

共引文献35

同被引文献15

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部