期刊文献+

向量优化问题(C,ε)弱有效的一个非线性标量化性质(英文)

A Nonlinear Scalarization Characterization of Weakly (C,ε)-Efficient Solutions in Vector Optimization
原文传递
导出
摘要 非线性标量化研究正在成为向量优化领域中的研究热点之一。有文献在co-radiant集的基础上提出了一种新的(C,ε)-弱有效解并利用Gerstewitz泛函给出了这种新的一个必要条件,它统一了几种经典的近似解。利用Hiriart-Urruty等人提出的非线性标量化函数,建立了(C,ε)-弱有效解的一个必要条件。 In recent years, the research of nonlinear scalarization method has become a research focus. Recently, Gutierrez et al. proposed a new type of efficiency based on co-radiant set which called (C,ε)-efficient solution in vector optimization and gave a necessary condition by the Gerstewitz function. This new notion of efficiency unifies some well-known concepts introduced previously in the literature. In this paper, we establish a new necessary condition via the A function for weakly (C,ε)-efficient solution. This can be used to obtain the (C,ε)-efficient solution set by solving the scalar optimization.
作者 郭辉
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期7-10,共4页 Journal of Chongqing Normal University:Natural Science
基金 the National Natural Science Foundation of China(No.11301574 No.11271391)~~
关键词 (C ε)-弱有效解 非线性标量化 向量优化 weakly (C,ε)-efficient solutions nonlinear scalarization vector optimization.
  • 相关文献

参考文献13

  • 1Kutateladze S. Convex e-programming[J]. Soviet Mathe- matics Doklady, 1979,20(2) : 390-393.
  • 2White D J. Epsilon efficieney[J]. Journal of Optimization Theory and Applications, 1986,49 (2) : 319-337.
  • 3Helbig S. On a new concept for e-efficieney[R]. Montreal: Talk at Optimization Days, 1992.
  • 4N6meth A B. A nonconvex vector minimization problem [J]. Nonlinear Analysis, 1986,10(7) :669-678.
  • 5Tanaka T. A new approach to approximately of solutions in vector optimization problems[C]//Fushimi M, Tone K. In Proceedings of APORS. Singapore: World Scientific Pub- lishing, 1995 : 497-504.
  • 6Gutirrez C,Jim6nez B, Novo V. A unified approach and op- timality conditions for approximate solutions of vector opti- mization problems [J].SIAM Journal of Optimization, 2006,17(3) : 688-710.
  • 7Guti6rrez C, im6nez B, Novo V. On approximate efficiency in multiobjective programming[J]. Mathematical Methods of Operational Research,2006,64(1) :165-185.
  • 8Guti6rrez C, Huerga L, Novo V. Scalarization and saddle points of approximate proper solutions in nearly subcon- vexlike vector optimization problems[J]. Journal of Mathe- matical Analysis and Applications, 2012,389 : 1046-1058.
  • 9Zaffaroni A. Degrees of efficiency and degrees of minimality [J]. SIAM Journal on Control and Optimization, 2003,42 (3) :1071-1086.
  • 10G pfert A,Tammer C,Riahi H, et al. Variational methods in partially ordered spaees[M]. New York: Springer-ver- lag, 2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部