摘要
非线性标量化研究正在成为向量优化领域中的研究热点之一。有文献在co-radiant集的基础上提出了一种新的(C,ε)-弱有效解并利用Gerstewitz泛函给出了这种新的一个必要条件,它统一了几种经典的近似解。利用Hiriart-Urruty等人提出的非线性标量化函数,建立了(C,ε)-弱有效解的一个必要条件。
In recent years, the research of nonlinear scalarization method has become a research focus. Recently, Gutierrez et al. proposed a new type of efficiency based on co-radiant set which called (C,ε)-efficient solution in vector optimization and gave a necessary condition by the Gerstewitz function. This new notion of efficiency unifies some well-known concepts introduced previously in the literature. In this paper, we establish a new necessary condition via the A function for weakly (C,ε)-efficient solution. This can be used to obtain the (C,ε)-efficient solution set by solving the scalar optimization.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第3期7-10,共4页
Journal of Chongqing Normal University:Natural Science
基金
the National Natural Science Foundation of China(No.11301574
No.11271391)~~
关键词
(C
ε)-弱有效解
非线性标量化
向量优化
weakly (C,ε)-efficient solutions
nonlinear scalarization
vector optimization.