摘要
主要研究以下二阶系统{u(t)-A(t)u(t)=▽F(t,u(t)),u(0)-u(T)=u(0)-u(T)=0,a.e.t∈[0,T]的周期解的存在性。当F(t,x)=F1(t,x)+F2(x)满足条件A且具有局部有界性T1lim inf x→+∞x 2α∫F(t,x)dt>0T2T∫(r1(t)dt)2/0T12-T∫k(t)dt及A(t)满足条件(A(t)x,x)≥h(t)|x|β+w(t)时,通过使用最小作用原理得到了一个新的周期解的存在性定理,改进了已有结果。
The purpose of this paper is to study the existence of periodic solutions of the following second order systems {u(t)-A(t)u(t)=△F(t,u(t),u(0)-u(T)=u(0)-u(T)=0,a,e,t∈[0,T].When F(t, x) = F1 (t, x) + F2 (x) satisfies assumption A and the potential function satisfies the locally boundary condition .lim inf 1/{x}→+∞|x|2a∫T0F(t,x)dt〉2T(∫T0r1(t)dt)^2/12-T∫T0k(t)dtand A(t) satisfies the condition (A(t)x,x)≥h(t)|x|β+w(t).One new existence theorem of the periodic solution is obtained by using the least action principle. Our result im-proves previously known result.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第3期100-102,共3页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金(No.11261002)
云南省科技厅应用基础项目(No.2011FZ167)
关键词
粒子滤波
权值优化
门限
均方根误差
重采样
periodic solutions
the least action principle
second order systems