摘要
用初等的证明方法,即递归数列的方法,对一个不定方程组6x2-4y2=2,20y2-6z2=14进行了较深入的研究。证明了该方程组有且仅有两个正整数解,这两个正整数解分别为x(,y,z)=1(,1,1)和x(,y,z)=(89,109,199)。
In this paper, with the method of recurrence sequences, we have shown that the only two solutions in positive integers of the simultaneous Diophantine equations 6x^2-4y^2=2,20y^2-6z^2=14 are (x,y, z) = (1,1,1) and (x,y,z) = (89,109,199).
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第3期114-118,共5页
Journal of Chongqing Normal University:Natural Science
关键词
不定方程组
正整数解
递归序列
二次互倒律
Diophantine equation
positive integer solution
recurrence sequence
quadratic residue