期刊文献+

基于最大加权队列的终端到终端通信时延感知跨层设计算法 被引量:2

Delay-aware algorithm of cross-layer design for device-to-device communication based on max-weighted queue
下载PDF
导出
摘要 基于李雅普诺夫(Lyapunov)优化理论的最大加权队列(MWQ)控制策略是一种可以获得队列稳定性和最优时延性能的跨层控制方法。针对终端到终端(D2D)通信业务具有实时性和时延感知低时延的要求,MWQ算法综合考虑物理层的信道状态信息(CSI)和MAC层的队列状态信息(QSI),以最大系统吞吐量为目标函数,动态地控制D2D节点的功率。提出了基于D2D通信的MWQ算法,将MWQ算法与固定功率分配算法、基于CSI算法、基于QSI算法等已有算法进行比较。仿真结果表明,MWQ算法在数据包平均到达率高于10 Mb/s时,能减少约0.5 s的平均时延;在平均时延相同时,能减少约26 d B的功率。该算法具有使D2D通信保持低时延的良好性能,为实现低时延的D2D通信提供了一定的参考。 Max Weighted Queue( MWQ) control policy based on the theory of Lyapunov optimization is a cross-layer control policy that achieves queue stability and optimal delay performance. For the real-time and delay-sensitive demand in Device-to-Device( D2D) communication services, the MWQ algorithm, in which the Channel State Information( CSI) of PHY layer and the Queue State Information( QSI) of MAC layer are collectively considered, makes the maximum system throughput as the objective function and controls the power of D2 D nodes dynamic. In this paper, a novel MWQ algorithm in the D2 D communication was proposed. Compared to the algorithm with fixed power, the CSI-based algorithm and the QSI-based algorithm, the MWQ algorithm can decrease the average delay about 0. 5 s when the average packets arrival rate exceeds10 Mb / s and require less 26 d B power while having the same average delay. So the MWQ algorithm can achieve a good performance and have a reference to obtain low latency in D2 D communication.
出处 《计算机应用》 CSCD 北大核心 2015年第5期1205-1208,共4页 journal of Computer Applications
基金 国家自然科学基金重点项目(61331009)
关键词 移动通信 终端到终端通信 时延感知的跨层设计 最大加权队列 mobile communication Device-to-Device (D2D) communication delay-aware cross-layer design Max Weighted Queue (MWQ)
  • 相关文献

参考文献13

  • 1王俊义,巩志帅,符杰林,陈小徽,林基明.D2D通信技术综述[J].桂林电子科技大学学报,2014,34(2):114-119. 被引量:33
  • 2WANG W, LAU V K N to-device Delay-aware crossAayer design for device- in future cellular systems[ l]. IEEE Corn- munications Magazine, 2014, 52(6) : 133 - 139.
  • 3CUI Y, LAU V K N. A survey on delay-aware resource control for wireless systems-large deviation theory, stochastic lyapunov drift and distributed stochastic learning[ J]. IEEE Transactions on Information Theory, 2012, 58(3) : 1677 - 1701.
  • 4GEORGIADIS L, NEELY M J, TASSIULAS L. Resource allocation and cross-layer control in wireless networks [ M]. Hanover: Now Publishers, 2006:1 - 102.
  • 5CHEN J, LAU V K N. Delay analysis of max-weight queue algo- rithm for time-varying wireless Ad Hoc networks - control theoreti- cal approach[ J]. IEEE Transactions on Signal Processing, 2013,61 (1):99-108.
  • 6TASSIULAS L, EPHREMIDES A. Stability properties of constrained queueing systems and scheduling for maximum throughput in muti- hop radio networks[ J]. IEEE Transactions on Automatic Control, 1992, 37(12) : 1936 - 1949.
  • 7张姣姣,吉建娇,司晶新,刘丹丹.现代控制中动态系统的稳定性分析[J].科技创新导报,2009,6(22):249-249. 被引量:1
  • 8ANDREWS M, KUMARAN K, RAMANAN K, et al. Scheduling in a queueing system with asynchronously varying service rates [ J ]. Probability in the Engineering and Informational Sciences, 2004, 18:191 -217.
  • 9ASADI A, WANG Q, MANCUSO V. A survey on device-to-device communication in cellular networks[ J]. IEEE Communications Sur- veys and Tutorials, 2014, 16(4) : 1801 - 1809.
  • 10NURMELA V, J~MSA T, KYOSTI P, et al. Channel modelling for device-to-device scenarios[ EB/OL]. [ 2014 - 06 - 20]. ht- tps://www, metis2020, com/wp-content/uploads/publications/ COST_IC1004 2013_Nurmela etal ChannelModellingForD2DSce narios, pdf.

二级参考文献38

  • 1Doppler K, Rinne M, Wijting C, et al. Device-to device communication as an underlay to LTE advanced net- works[J]. IEEE Communications Magazine, 2009, 47 (12) :42-49.
  • 2Kaufman B, Aazhang B. Cellular networks with an o verlaid device to device network[C]//IEEE 42nd Asilo- mar Conference on Signals, Systems and Computers, 2008:1537-1541.
  • 3Fodor G, Dahlman E, Mildh G, et al. Design aspects of network assisted device to device communications [J]. IEEE Communications Magazine,2012,50(3) :170 -177.
  • 4Doppler K, Rinne M P, Janis P, et al. Device-to-Device communications; functional prospects for LTE-ad- vanced networks[C]//IEEE International Conference on Communications Workshops, 2009 : 1-6.
  • 5Haykin S. Cognitive radio: brain-empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005,23 (2) : 201- 220.
  • 6Mitola J, Maguire Jr G Q. Cognitive radio: making software radios more personal[J]. IEEE Personal Com- munications, 1999,6 ( 4 ) : 13-18.
  • 7Wild B, Ramchandran K. Detecting primary receivers for cognitive radio applications[C]//IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005:124 -130.
  • 8Lee J, Gu J, Bae S J, et al. A session setup mechanism based on selective scanning for device-to-device commu- nication in cellular networks[C]//IEEE Asia Pacific Conference on Communications, 2011: 677-681.
  • 9Xu Shaoyi, Wang Haiming. Transmission mode selec- tion and communication establishment in the hybrid device-to-device and cellular networks [C]//IEEE In- ternational Conference on Ubiquitous and Future Net- works, 2012:156-161.
  • 10Wang H, Chu X. Distance-constrained resource sha- ring criteria for device-to device communications un derlaying cellular networks [J]. Electronics letters, 2012,48(9) :528-530.

共引文献32

同被引文献7

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部