期刊文献+

认知无线电网络基于QoS的监听时间与资源联合分配 被引量:9

Qo S-aware joint allocation of sensing time and resource in cognitive radio networks
下载PDF
导出
摘要 以最大化所有认知无线电用户(CRU)的吞吐量为目标,同时保证每个CRU的服务质量(Qo S)约束,研究了联合最优监听时间和资源分配问题,并基于此提出了一种监听时间与资源联合分配算法。在多信道认知无线电网络中,频谱监听和资源分配都会影响网络的吞吐量。兼顾二者的联合优化问题可以被分解为两个子问题:固定监听时间的资源分配问题,以及固定资源分配策略的最优监听时间一维穷举搜索问题。提出的算法可以通过穷举搜索获得最优监听时间,并通过次梯度算法获得最优资源分配策略。仿真结果表明,提出的最优监听时间与资源分配算法可以最大化认知无线网络的吞吐量;此外,各认知用户的Qo S需求也能得到保证。 In order to maximize the throughput of Cognitive Radio Users( CRU) and guarantee CRUs' Quality of Service( Qo S) requirements, jointly optimizing sensing time and resource allocation was investigated. Based on this problem, a joint allocation of sensing time and resource algorithm was proposed. In multichannel cognitive radio networks, both spectrum sensing and resource allocation could influence the network throughput. Original joint optimization problem which considers both issues can be divided into two sub-optimization problems: transmit power and channel allocation problem with fixed sensing time, and one-dimensional exhaustive search for optimal sensing time with fixed resource allocation strategy. Using the proposed algorithm, the optimal sensing time can be obtained by exhaustive search and the optimal resource allocation strategy can be achieved by subgradient method. Simulation results show that the proposed optimized sensing time and resource allocation algorithm can maximize the throughput of cognitive radio networks. Furthermore, Qo S requirements of CRU can be guaranteed.
作者 李李
出处 《计算机应用》 CSCD 北大核心 2015年第5期1230-1233,1237,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61071079 61300169) 四川省教育厅基金资助项目(14ZB0038)
关键词 多信道认知无线电网络 资源分配 监听时间 服务质量需求 muhichannel cognitive radio network resource allocation sensing time Quality of Service (QoS) requirement
  • 相关文献

参考文献13

  • 1MITOLA J, MAGUIRE G Q. Cognitive radio: making software ra- dios more personal[ J]. IEEE Personal Communications, 1999, 6 (4) : 13 - 18.
  • 2HAYKINS S. Cognitive radio: brain-empowered wireless communi- cation[ J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
  • 3HAYKIN S, THOMSON J, REED J H. Spectrum sensing for cogni- tive radio[J]. Proceedings of the IEEE, 2009, 97(5): 849 -877.
  • 4GANDETYO M, REGAZZONI C. Spectrum sensing: a distributed approach for cognitive terminals[ J]. IEEE Journal on Selected Are- as in Communications, 2007, 25(3): 546-557.
  • 5GHAVAMI S, ABOLHASSANI B. Spectrum sensing and power/rate control in CDMA cognitive radio networks[ J]. International Journal of Communication Systems. 2012. 25(2) : 121 - 145.
  • 6LIANG Y-C, ZENG Y, PEH E C Y, et al. Sensing-throughput tradeoff for cognitive radio networks [ J ]. IEEE Transactions on Wireless Communications, 2008, 7(4) : 1326 -1337.
  • 7KANG X, LIANG Y-C, GRAG H K, et al. Sensing-based spectrum sharing in cognitive radio networks [ J ]. IEEE Transactions on Vehicular Technology, 2009, 58 ( 8 ) : 4649 - 4654.
  • 8PEI Y, LIANG Y-C, PEH E C Y, et al. How much time is needed for wideband spectrum sensing? [ J] IEEE Transactions on Wireless Communications, 2009, 8(11 ): 5466-5471.
  • 9STOTAS S, NALLANATHAN A. Optimal sensing time spectrum sensing and power allocation in multihand cognitive radio networks [ J]. IEEE Transactions on Communications, 2011, 59 ( 1 ) : 226 - 235.
  • 10FAN R, JIANG H, GUO Q, et al. Joint optimal cooperativesensing and resource allocation in muhichannel cognitive radio networks [ J 1. IEEE Transactions on Vehicular Technulo~, 2011, 60(2) : 722 -729.

同被引文献59

  • 1Ahmadi M, Mojallali H. Chaotic invasive weedoptimizationalgorithm with application to parameter estimation of chaot-ic systems[J]. Chaos, Solitons & Fractals, 2012, 45(9/10):1108-1120.
  • 2Federal Communications Commission. Notice of Proposed Rule Making and Order[EB/OL]. [2016-03-01]. http:// bpdg.blogs.eff.org/archives/nprm.pdf.
  • 3Mitola J, Maguire G Q. Cognitive radio: making software radios more personal[J]. IEEE Personal Communications, 1999,6(4): 13-18.
  • 4Simon Haykin. Cognitive Radio: Brain-empowered Wireless Communications[J]. IEEE JSAC, 2005,23(2): 201-220.
  • 5Weiss T A, Jondral F K. Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency[J]. IEEE Communications Magazine, 2004,42(3): 8-14.
  • 6Mao J, Xie G, Gao J, et al. Energy Efficiency Optimization for OFDM-Based Cognitive Radio Systems: A Water- Filling Factor Aided Search Method[J]. IEEE Transactions on Wireless Communications, 2013,12(5): 2366-2375.
  • 7Wang S, Ge M, Zhao W. Energy-Efficient Resource Allocation for OFDM-Based Cognitive Radio Networks[J]. IEEE Transactions on Communications, 2013,61(8): 3181-3191.
  • 8Pei E, Wang S, Zhang Z. Energy-Efficient Power Allocation for OFDM-Based Cognitive Radio Systems with Imperfect Spectrum Sensing[A]. Wireless Communications, Networking and Mobile Computing (WiCOM), 2011 7th International Conference, 2011 : 1-3.
  • 9Gao Y, Xu W, Li S, et al. Energy Efficient Resource Allocation for Cognitive Radio Networks with Imperfect Spectrum Sensing[A]. IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2013:3318-3322.
  • 10Shen Z, Andrews J G, Evans B L. Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints[J]. IEEE Transactions on Wireless Communications, 2005,4(6): 2726-2737.

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部