期刊文献+

具有反向学习和自适应逃逸功能的粒子群优化算法 被引量:7

Particle swarm optimization algorithm using opposition-based learning and adaptive escape
下载PDF
导出
摘要 为克服粒子群优化算法进化后期收敛速度慢、易陷入局部最优等缺点,提出一种具有反向学习和自适应逃逸功能的粒子群优化算法。通过设定的阈值,算法将种群进化状态划分为正常状态和"早熟"状态:若算法处于正常的进化状态,采用标准粒子群优化算法的进化模式;当粒子陷入"早熟"状态,运用反向学习和自适应逃逸功能,对个体最优位置进行反向学习,产生粒子的反向解,增加粒子的反向学习能力,增强算法逃离局部最优的能力,提高算法寻优率。在固定评估次数的情况下,对8个基准测试函数进行仿真,实验结果表明:所提算法在收敛速度、寻优精度和逃离局部最优的能力上明显优于多种经典粒子群优化算法,如充分联系的粒子群优化算法(FIPS)、基于时变加速度系数的自组织分层粒子群优化算法(HPSO-TVAC)、综合学习的粒子群优化算法(CLPSO)、自适应粒子群优化算法(APSO)、双中心粒子群优化算法(DCPSO)和具有快速收敛和自适应逃逸功能的粒子群优化算法(FAPSO)等。 To overcome slow convergence velocity of Particle Swarm Optimization( PSO) which falls into local optimum easily, the paper proposed a new approach, a PSO algorithm using opposition-based learning and adaptive escape. The proposed algorithm divided states of population evolution into normal state and premature state by setting threshold. If popolation is in normal state, standard PSO algorithm was adopted to evolve; otherwise, it falls into  premature , the algorithm with opposition-based learning strategy and adaptive escape was adopted, the individual optimal location generates the opposite solution by opposition-based learning, increases the learning ability of particle, enhances the ability to escape from local optimum, and raises the optimizing rate. Experiments were conducted on 8 classical benchmark functions, the experimental results show that the proposed algorithm has better convergence velocity and precision than classical PSO algorithm, such as Fully Imformed Particle Swarm optimization( FIPS), self-organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients( HPSO-TVAC), Comprehensive Learning Particle Swarm Optimizer( CLPSO),Adaptive Particle Swarm Optimization( APSO), Double Center Particle Swarm Optimization( DCPSO) and Particle Swarm Optimization algorithm with Fast convergence and Adaptive escape( FAPSO).
出处 《计算机应用》 CSCD 北大核心 2015年第5期1336-1341,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61261039 61263029) 江西省自然科学基金资助项目(20132BAB211031 20142BAB207018) 江西省科技支撑计划项目(20142BBG70034) 江西省高校科技落地计划项目(KJLD13096) 南昌市科技计划项目(2013HZCG011 2014HZZC008 2013HZCG006)
关键词 粒子群优化算法 反向学习 算法状态 自适应逃逸 Particle Swarm Optimization (PSO) algorithm Opposition-Based Learning (OBL) algorithm' s state adaptive escape
  • 相关文献

参考文献14

  • 1KENNEDY J, EBERHART R. Particle swarm optimization[ C]// Proceedings of the 4th IEEE International Conference on Neural Net- works. Piscataway: IEEE, 1995: 1942- 1948.
  • 2WANG L, YANG B, CHEN Y. Improving particle swarm optimiza- tion using multi-layer searching strategy[ J]. Information Sciences, 2014, 274:70 - 94.
  • 3BEHESHTI Z, SHAMSUDDIN S M, HASAN S. biPSO: Median-o- riented particle swarm optimization [ J]. Applied Mathematics and Computation, 2013, 219(11) : 5817 - 5836.
  • 4KIRAN M S, GUNDUZ M. A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems[ J]. Applied Soft Computing, 2013,13(4) : 2188 -2203.
  • 5CHEN W, ZHANG J, LIN Y, et al. Particle swarm optimization with an aging leader and challengers[ J]. IEEE Transactions on Evo- lutionary Computation, 2013, 17(2) : 241 -258.
  • 6郭通,兰巨龙,李玉峰,陈世文.自适应的分数阶达尔文粒子群优化算法[J].通信学报,2014,35(4):130-140. 被引量:18
  • 7BEHESHTI Z, SHAMSUDDIN S M. CAPSO: Centripetal acceler- ated particle swarm optimization[ J]. information Sciences, 2014, 258:54-79.
  • 8史小露,孙辉,李俊,朱德刚.具有快速收敛和自适应逃逸功能的粒子群优化算法[J].计算机应用,2013,33(5):1308-1312. 被引量:14
  • 9TIZHOOSH H R. Opposition-based learning: a new scheme for ma- chine intelligence[ C] // Proceedings of the 2005 International Com- putational Intelligence for Modeling Control and Automation. Piscat- away: IEEE, 2005:695-701.
  • 10MENDES R, KENNEDY J, NEVES J. The fully informed particle swarm: simpler, maybe better [ J]. IEEE Transactions on Evolu- tionary Computation, 2004, 8(3): 204-210.

二级参考文献36

  • 1窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展,2005,42(5):897-904. 被引量:39
  • 2周殊,潘炜,罗斌,张伟利,丁莹.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报,2006,34(5):897-901. 被引量:33
  • 3雷开友,邱玉辉.基于自适应粒子群算法的约束布局优化研究[J].计算机研究与发展,2006,43(10):1724-1731. 被引量:22
  • 4KENNEDY J, EBERHART R. Particle swarm optimization[ C]// Proceedings of IEEE International Conference on Neural Networks. Piscataway: IEEE, 1995,4:1942 - 1948.
  • 5KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algo- rithm[ J]. Journal of Global Optimization, 2007, 39(3) : 459 - 171.
  • 6BAO L, ZENG J C. Comparison and analysis of the selection in arti- ficial bee colony algorithm [ C]//Proceeding of the 9th International Conference on Hybrid Intelligent Systems. Washington, DC: IEEEComputer Society, 2009:411 - 416.
  • 7LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of muhimo- dal functions[ J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3) :281 -295.
  • 8SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem defi- nitions and evaluation criteria for the CEC2005 special session on realparameter optimization, KanGAL Report Number 2005005 [ R/ OL]. [2012 - 10 - 01]. http://bschw, googlecode, com/svn-his- tory/r599/tmnk/EvalCompu/Tech-Report-May-30-05, pdf.
  • 9JIAO B, LIAN Z G, GU X S. A dynamic inertia weight particle swarm optimization algorithm[ J]. Chaos Solitons & Fractals, 2008, 37(3): 698 -705.
  • 10RATSIAWEERA A, HALGAMUGE S, WATSON I-I C. Self organ- izing hierarchical particle swarm optimizer with time varying accel- eration coefficients[ J]. IEEE Transactions on Evolutionary Compu- tation, 2004, 8(3): 240-255.

共引文献57

同被引文献58

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部