期刊文献+

基于暗原色理论和自适应双边滤波的煤矿尘雾图像增强算法 被引量:14

Enhancement algorithm for fog and dust images in coal mine based on dark channel prior theory and bilateral adaptive filter
下载PDF
导出
摘要 针对煤矿井下存在大量煤尘、水雾导致获取的视频图像伴有大量的噪声、分辨率低、模糊的问题,提出了一种基于暗原色理论和自适应双边滤波的煤矿尘雾图像增强算法。基于暗原色先验理论,采用自适应双边滤波代替softmatting过程来求取精细透射率图,并根据煤矿井下特殊环境,从新的角度求取全球大气光值、粗略透射率图,并根据图像退化模型实现图像的去噪。实验结果表明,对于分辨率为1 024×576的图像处理时间为1.9 s,与He算法(HE K,SUN J,TANG X.Single image haze removal using dark channel prior.IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):1-13.)相比,运行效率提高了5倍。与直方图均衡法等算法相比,所提算法有效增强了图像细节、边缘,整体上更加适合人类视觉和视频监控的要求。 Concerning the problem that videos images captured from coal mines filled with coal dust and mist are often with quality problems such as lots of noise, low resolution and blur. To solve this problem, an enhancement algorithm for fog and dust images in coal mine based on dark channel prior theory and bilateral adaptive filter was proposed. On the basis of dark channel prior, the softmatting process was replaced with the adaptive bilateral filtering to obtain fine transmittance map.Then according to the special circumstances of coal mines, the global atmosphere light and the rough transmittance map were got from new perspective and image denoising was realized on the basis of the image degradation model. The experiment results show that the image processing time for a resolution of 1 024 × 576 is 1. 9 s. Compared with He algorithm( HE K, SUN J,TANG X. Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33( 12) : 1- 13.), the efficiency increased 5 times. Compared with other algorithms such as histogram equalization method, the proposed algorithm is effective to enhance the image detail. In this way, images can be more suitable for human vision as a whole.
出处 《计算机应用》 CSCD 北大核心 2015年第5期1435-1438,1448,共5页 journal of Computer Applications
基金 山西省科技重大专项(20121101001) 山西省科技攻关项目(20141039) 山西省留学人员科研资助项目(2013-097)
关键词 暗原色先验理论 自适应双边滤波 图像去雾 介质传播函数 大气物理散射模型 dark channel prior theory bilateral adaptive filtering fog removing of image medium transmission function atmospheric scattering model
  • 相关文献

参考文献17

  • 1SNYDER J P. Flattening the earth: two thousand years of map pro- jections[M]. Chicago: University of Chicago Press, 1997: 263- 266.
  • 2ZORIN D, BARR A H. Correction of geometric perceptual distor- tions in pictures[ C]// Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1995:257-264.
  • 3ZELNIK-MANOR L, PETERS G, PERONA P. Squaring the circle in panoramas[ C] // Proceedings of the 10th IEEE International Con- ference on Computer Vision. Piscataway: IEEE, 2005: 1292- 1299.
  • 4KOPF J, LISCHINSKI D, DEUSSEN O, et al. Locally adapted pro- jections to reduce panorama distortions[ J]. Computer Graphics Fo- rum, 2009, 28(4) : 1083 - 1089.
  • 5SWAMINATHAN R, NAYAR S K. Nonmetrie calibration of wide- angle lenses and polyeameras[ J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2000, 22(10) : 1172 - 1178.
  • 6DEVERNAY F, FAUGERAS O. Straight lines have to be straight [ J]. Machine Vision and Applications, 2001, 13(1) : 14 -24.
  • 7KANNALA J, BRANDT S S. A generic camera model and calibra- tion method for conventional, wide-angle, and fish-eye lenses[ J]. IEEE Transactions on Pattem Analysis and Machine Intelligence, 2006, 28(8): 1335-1340.
  • 8HARTLEY R, KANG S B. Parameter-free radial distortion correc- tion with center of distortion estimation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1309- 1321.
  • 9杨玲,成运.应用经纬映射的鱼眼图像校正设计方法[J].工程图学学报,2010,31(6):19-22. 被引量:32
  • 10英向华,胡占义.一种基于球面透视投影约束的鱼眼镜头校正方法[J].计算机学报,2003,26(12):1702-1708. 被引量:71

二级参考文献23

  • 1汪嘉业,杨兴强,张彩明.基于鱼眼镜头拍摄的图像生成漫游模型[J].系统仿真学报,2001,13(S2):66-68. 被引量:22
  • 2黄有度,苏化明.一种鱼眼图象到透视投影图象的变换模型[J].系统仿真学报,2005,17(1):29-32. 被引量:28
  • 3崔汉国,张星,刘晓成.图像和建模相结合的虚拟场景绘制技术研究[J].系统仿真学报,2005,17(5):1168-1171. 被引量:12
  • 4[1]Swaminathan R, Nayar S K. Non-metric calibration of wideangle lenses and polycameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1172~1178
  • 5[2]Kang S B. Radial distortion snakes. In: Proceedings of IAPR Workshop on Machine Vision Applications, Tokyo, 2000. 603~606
  • 6[3]Devernay F, Faugeras O. Straight lines have to be straight:Automatic calibration and removal of distortion from scenes of structured environments. Machine Vision and Applications,2001, 13(1):14~24
  • 7[4]Weng J, Cohen P, Herniou M. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (10): 965~980
  • 8[5]Nomura Y, Sagara M, Naruse H, Ide A. Simple calibration algorithm for high-distortion-lens camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (11):1095~1100
  • 9[6]Shah S, Aggarwal J K. Intrinsic parameter calibration procedure for a (high distortion) fish-eye lens camera with distortion model and accuracy estimation. Pattern Recognition, 1996, 29(11): 1775~1788
  • 10[7]Zhang Z. On the epipolar geometry between two images with lens distortion. In: Proceedings of the International Conference on Pattern Recognition, Vienna, Austria, 1996. 407~411

共引文献101

同被引文献102

引证文献14

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部