期刊文献+

稀疏补分析子空间追踪算法 被引量:1

Cosparsity analysis subspace pursuit algorithm
下载PDF
导出
摘要 针对压缩感知理论的稀疏分析模型下的子空间追踪算法信号重构概率不高、重构性能不佳的缺点,研究了此模型下的稀疏补子空间追踪信号重构算法;通过选用随机紧支框架作为分析字典,设计了目标优化函数,改进优化了稀疏补取值方法,改进了算法迭代过程,实现了改进的稀疏补分析子空间追踪新算法(IASP)。实验结果证明,所提算法的信号完全重构概率明显高于分析子空间跟踪(ASP)等5种算法的信号完全重构概率;对于含高斯噪声的信号,所提算法重构信号的整体平均峰值信噪比明显超过ASP等3种算法整体平均峰值信噪比(PSNR),但略低于贪婪分析追踪(GAP)等2种算法的整体平均峰值信噪比。所提算法可用于语音和图像信号处理等领域。 As subspace pursuit algorithm under cosparsity analysis model in compressed sensing has the shortcomings of low completely successful reconstruction probability and poor reconstruction performance, a cosparsity analysis subspace pursuit algorithm was proposed. The proposed algorithm was realized by adopting the selected random compact frame as the analysis dictionary and redesigning target optimization function. The selecting method of cosparsity value and the iterated process were improved. The simulation experiments show that the proposed algorithm has obviously higher completely successful reconstruction probability than that of Analysis Subspace Pursuit( ASP) and other five algorithms, and has higher comprehensive average Peak Signal-to-Noise Ratio( PSNR) for the reconstructed signal than that of ASP and other three algorithms, but a little bit lower than that of Gradient Analysis Pursuit( GAP) and other two algorithms when the original signal has Gaussion noise. The new algorithm can be used in audio and image signal processing.
出处 《计算机应用》 CSCD 北大核心 2015年第5期1471-1473,1478,共4页 journal of Computer Applications
基金 东莞市科技计划项目(2011108102038)
关键词 压缩感知 稀疏补分析模型 子空间分析 追踪 compressed sensing eosparsity analysis model subspace analysis pursuit
  • 相关文献

参考文献20

  • 1ELAD E, MILANFAR P, RUBINSTEIN R. Analysis versus synthe- sis in signal priors[ J]. Inverse Problems, 2007, 23 (3) : 947 - 968.
  • 2CANDES E J, ELADAR Y C, NEEDEL D. Compressed sensing with coherent and redundant dictionaries [ J]. Applied and Compu- tational Harmonic Analysis, 2011, 31(1) : 59 -73.
  • 3RAUHUT H, SCHNASS K, VANDERHEYNEST P. Compressed sensing and redundant dictionaries [ J]. IEEE Transactions on In- formation Theory, 2008, 54(5) : 2210 - 2219.
  • 4CANDES E J, TAO T. Near-optimal signal recovery from random projections: universal encoding strategies? [ J]. IEEE Transactions on Information Theory, 2006, 52(12) : 5406 - 5425.
  • 5张宗念,黄仁泰,闫敬文.压缩感知信号盲稀疏度重构算法[J].电子学报,2011,39(1):18-22. 被引量:29
  • 6FOUCART S. Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants[ C]// Proceedings of Approxi- mation Theory XIII. Piscataway: IEEE, 2012,13:65-77.
  • 7NAM S, DAVIS M, ELAD M, et al. Cosparse analysis modeling [ C]//Proceedings of the 2011 IEEE International Conference on A- coustics, Speech and Signal Processing. Piscataway: IEEE, 2011: 5804 - 5807.
  • 8刘小青,李有明,李程程,季彪,陈斌,邹婷.基于一次投影子空间追踪的压缩感知信号重构[J].计算机应用,2014,34(9):2514-2517. 被引量:4
  • 9刘晓光,高兴宝,周冬梅.基于子空间优化的l^2-总变分图像恢复[J].计算机应用,2013,33(4):1112-1114. 被引量:2
  • 10DAI W, MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction [ J ]. IEEE Transactions on Information Theory, 2009,55 (5) :2230 - 2249.

二级参考文献77

  • 1E Candes, J Romberg. Quantitative robust uncertainty principles and optimally sparse decompositions[ J]. Foundations of Com- putational Mathematics, 2006,6(2) : 227 - 254.
  • 2E Candes, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[ J]. IEEE Transaction on Information Theory, 2006, 52(2) :489 - 509.
  • 3E Candes, T Tao. Near-optimal signal recovery from random projections: Universal encoding strategies? [J]. IEEE Transaction on Information Theory,2006,52(12) :5406- 5425.
  • 4D L Donoho. Compressed sensing[ J]. IEEE Transaction on Information Theory,2006,52(4) : 1289 - 1306.
  • 5D L Donoho, Tsaig Y. Extensions of compressed sensing[ J]. Signal Processing, 2006,86(3) : 533 - 548.
  • 6Mallat S,Z Zhang. Matching pursuit in a time-frequency dictionary[J].IEEE Transaction on Signal Processing, 1993,41 (12) :3397 - 3415.
  • 7K Schnass, P Vandergheynst. Dictionary preconditioning for greedy algorithms [ J ]. IEEE Transaction on Signal Process, 2008,56(5) : 1994 - 2002.
  • 8S S Chen, D L Donoho, M A Saunders, etc. Atomic decomposition by basis pursuit[ J] . SIAM Journal of Scientific Computing, 1998,20(1 ) :33 - 61.
  • 9D L Donoho. For most large underdetermined systerns of linear equations the minimal Ll-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics,2006,59(6) :797 - 829.
  • 10J J Fuchs. Recovery of exact sparse representations in the presence of bounded noise[ J ]. IEEE Transaction on Information Theory, 2005,51 (10) : 3601 - 3608.

共引文献58

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部